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ABSTRACT 

In this paper we show how bootstrap can be implemented in hierarchical clustering 
algorithms as a strategy to estimate the number of clusters (k). Ward´s algorithm was 
chosen as an example. The estimation of k is based on a similarity coefficient and three 

statistical stopping rules, pseudo F, pseudo 
2T and CCC. The performance of the estimation 

procedure was evaluated through Monte Carlo simulation considering data consisting of 
correlated and uncorrelated variables, nonoverlapping and overlapping clusters. The 
estimation procedure discussed in this paper can be used with clustering algorithms other 
than Ward´s and also to provide initial solutions for non-hierarchical grouping methods.   

Keywords: Ward´s Algorithm. Estimation of Number of Clusters. Bootstrap. 

1. INTRODUCTION 

Cluster analysis is used to classify objects into groups based on their similarities. 
Applications can be found in a variety of fields such as Data Mining, Marketing, Industry, 
Biology, Ecology, Medicine, Geology, among others. One of the most essential issues is the 
estimation of the number of clusters (k) since an improper choice might lead to bad 
clustering outcomes and mistaken decisions. Some procedures of estimation have been 
proposed in the literature based on statistical methods and neural networks (see for 
example, Fraley and Raftery, 2002; Guo, Chen and Lyu, 2002); Hruschkaa et. al.,2006; 
Katosa, 2007; Rosenberger and Cheddi, 2000; Steinley and Brusco, 2008; Teboulle et. al. 
2006). However, most of the studies consider only a small number of real or simulated data 
sets, a few different structures of correlation between the classification variables and a small 
number of dimensions (p=2 or 3). 

One common procedure in practical data analysis is to use an agglomerative 
hierarchical cluster algorithm such as single linkage, complete linkage, average linkage, 
centroid and Ward´s (EVERITT, 2001) as an exploratory method to estimate the value of k. 
However, these algorithms require some criteria to interrupt them in order to obtain an 
estimate. Many stopping rules based on clusters similarity or the internal variability measures 
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of the cluster partition have been explored in the literature (see MARRIOTT,1971; 
KRZANOWSKI and LAI 1988; GORDON, 1999; TIBSHIRANI et. al., 2001, among others). 
Some of the simplest and very popular statistical stopping rules are pseudo-F (CALINSKI 

and HARABASZ, 1974), pseudo- 2T (DUDA and HART,1973) and CCC-Cubic Clustering 
Criterion (SARLE,1983). In the study presented by MILLIGAN and COOPER (1985) these 
three stopping rules were the best among 30 different rules which were compared by using 
Monte Carlo simulation. In their study a total of 108 data sets (with 50 points each) were 
generated and Euclidian distance was used to compare clusters. The good performance of 
pseudo F was also indicated in ATLAS and OVERALL (1994) although their study was 
based on a small number of simulated data sets, and in BOWMAN et al. (2004) who 
analysed some neuroimaging data. 

In practical data analysis after obtaining a point estimate of k, by any procedure, is 
common to evaluate the partitions in some neighborhood of the estimate in order to find the 
final solution considering the nature of the data in the specific field. Therefore, an interval 
estimate for k is needed.  

In PECK, FISHER and VAN NESS (1989) an approximated confidence interval for 
the true number of clusters of the partition was built by using bootstrap procedure. For each 
bootstrap sample their method required a minimization of an objective function in order to 
obtain the optimal estimate of k. In their paper the objective function of the K-Means non-
hierarchical cluster procedure (EVERITT, 2001) was used. For each bootstrap sample the 

number of clusters was estimated (say k̂ ) and the empirical distribution of k̂  was used to 
define the confidence interval for the true value of k. Data were simulated considering the 
univariate and bivariate normal distributions and the respective number of clusters were  k=5 
and 10 for the univariate case and k=4 and 9 for the bivariate. From each simulated cluster 
structure, 30R =  random samples of sizes 75n =  for 5k = , 100n =  for 10k = , 60n =  for 

4k =  and 90n =  for 9k =  were selected. The number of bootstrap samples was set as 
B=75 for computational reasons according to the authors. The squared Euclidian distance 
was used to measure the dissimilarity among the sample clusters and three basic 
configurations were simulated defined as: "near"- groups with means one standard deviation 
apart; "far"- groups with means four standard deviations apart and "combined"- groups which 
was a mixture of these two types of configurations. The results presented in the paper 
showed that the bootstrap combined with the K-means clustering algorithm was a good 
strategy to estimate the true number of clusters since in the majority of the cases the 
proposed procedure was able to identify approximately, the true number of clusters of the 
simulated structure. The performance was better for groups very far apart as expected. In all 
cases the range of the confidence intervals increased as the value of the true number of 
clusters k increased. Although only the K-Means method was evaluated in PECK, FISHER 
and VAN NESS (1989) the idea of using the bootstrap procedure to generate a confidence 
interval for k can be implemented with any other clustering  procedure. In this paper we will 
show how the bootstrap can be implemented in Ward´s hierarchical cluster algorithm (1963) 
when the goal is to estimate k by using some of the stopping rules: similarity coefficient, 

pseudo F, pseudo 2T and CCC. To understand some features of these stopping rules a 
Monte Carlo simulation study was performed. Many different clusters structures were 
simulated  considering spherical and nonspherical clusters, with and without overlapping, 
with a larger number of points and variables. The number of bootstrap samples was set as 
B=1000 for each simulated cluster structure.  Some examples using real data sets are also 
presented. 

There are other algorithms and stopping rules that can be used for grouping and to 
estimate the number of clusters but they will not be part of this presented paper. The readers 
can obtain more information in MILLIGAN and COOPER (1985) or XU and WUNSCH 
(2005), among others. 
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2. WARD´S CLUSTERING ALGORITHM 

Agglomerative hierarchical cluster algorithms are largely used as an exploratory 
statistical technique to determine the number of clusters of data sets and to create the 
groups. Basically they work as follows: in the first stage each of the n objects to be clustered 
is considered as a single cluster. The objects are then compared among themselves by 
using a measure of distance such as Euclidean, for example.  The two clusters with smaller 
distance (or larger similarity) are joined. This procedure is repeated over and over again until 
the desirable number of clusters is achieved. Only two clusters can be joined in each stage 
and they cannot be separated after they are joined. A linkage method is used to compare 
the clusters in each stage and to decide which of them should be combined. WARD´s 
(1963), called also as minimum variance, is one of the most popular and important 

algorithms. Briefly speaking let lC  and mC be two clusters with means vectors (centroids) lX  

and mX  and sizes l mn ,n , respectively. In Ward´s method the distance between clusters lC  

and mC is a function of the squared Euclidean distance between the cluster centroids and it is 

defined as 

 

                                             l m
l m l ml ,m

l m

n n
d ( X X )´ ( X X )

n n
= − −

+
                                         (1) 

 

It can be shown that the distance in (1) represents the additional within sum of 
squares of the partition resulted from the combination of clusters lC  and mC in only one 

cluster. In each step of the algorithm the distance as (1) is calculated for every pair of 
clusters that could be joined in the particular step. The two clusters with the smallest 
distance are combined. This is equivalent to combine the two clusters that increased the 
most the sum of squares between clusters of the partition or that minimizes the within sum of 
squares of the partition. Ward´s algorithm has a good performance for recovering the 
original clusters (see MINGOTI and LIMA, 2006; MILLIGAN and COOPER, 1980) and 
provides a solution equivalent to the maximization of the multivariate normal distribution 
when the covariance matrix for all clusters are equal and proportional to the identity matrix. 
However, the use of Ward´s method variables does not require multivariate normality.   

3. STOPPING RULES TO ESTIMATE THE NUMBER OF CLUSTER S  

3.1. SIMILARITY OR DISTANCE LEVEL  

A simple rule that can be used to decide which is the appropriate step to stop Ward´s 
or any other hierarchical cluster algorithm is the analysis of the similarity or distance values 
of each step. The main objective is to produce a partition such that the elements within a 
group are similar and elements in different groups are dissimilar. Let g be the respective 
number of cluster of  the particular algorithm step. Then, if from step g to the step (g-1) the 
similarity (or distance level) decreased (or increased) significantly then the clusters that were 
joined in (g-1) step were not very similar and they should not be combined. Therefore, the 
algorithm should be interrupted in step g and the respective number of clusters used as a 
point estimate of k. There are many similarity coefficients in the literature (see JOHNSON 
and WICHERN, 2002) but in this paper the similarity measure between any two clusters lC  

and mC  is defined as 
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where ( )max , , 1,2,..., ,ijd i j n i j= ≠  is the largest distance between sampled 

elements e.g., the maximum value of the distance matrix used in the first step of the 
clustering algorithm and lmd  is the distance between clusters lC  and mC . When the 

similarity level is below a certain pre-specified level, the cluster algorithm should be 
interrupted and the respective number of clusters adopted as an estimate of the number of 
clusters of the partition.  Due to the fact that (2) has a maximum value (100) its use makes 
easier to evaluate the loss of the quality of the partition from one step to the next in the 
cluster algorithm. However, it is just a start since it reflects only the similarity of the clusters 
joined in the respective step and it does not take into consideration the internal variability of 
the data partition that was create in the step. In fact, the index (2), which is implemented in 
Minitab for Windows statistical software, is a pseudo-similarity because it may take negative 

values since the distance lmd  can be larger than ( )max , , 1,2,..., ,ijd i j n i j= ≠ . Therefore, 

only the steps of the clustering algorithm where (2) is positive should be considered to 
estimate k.  In Ward´s algorithm the distance ijd  between sampled elements is taken as the 

squared Euclidean distance and lmd  is define as in (1).  

The main problem is how to choose the proper similarity level to stop the clustering 
algorithm. Usually the choice is subjective. Of course the best would be to estimate k with 
high similarity which means to stop the algorithm when similarity is around 90% or more. 
However, this procedure can produce an estimate of k too large, much larger than the 
necessary as the results in section 4 will show. 

3.2. PSEUDO F 

The statistics known as pseudo F was proposed by CALINSKI and HARABASZ 
(1974). It is a function of the number of clusters g produced in each step of the clustering 
algorithm and it is defined as 

 

                                ( ) ( )2 2/( 1)
( ) /( 1) /(1 )

/( )

SSB g
F n g g R R

SSW n g

−= = − − −
−

                              (3) 

 

where 2R ( SSB / SST )= is the squared intraclass correlation coefficient, 2

1

g

jo
j

SSB d
=

= ∑  

and 
n

2
l

l 1
SST d

=
= ∑  are called the total sum of squares between clusters and the total sum of 

squares of the partition, respectively; jod  is the Euclidean distance between the jth cluster 

mean vector and the overall sample mean vector; ld  is the Euclidean distance between the 

lth observation and the overall sample mean vector; n is the number of observed vectors 

(sample size) and SSW SST SSB= −  is the within sum of squares of the partition. As 2R  

increases the intraclass dispersion of the partition decreases. The coefficient 2R  is an 
increasing function of the number of clusters g and decreases when SSW increases. In each 
step of the cluster algorithm the statistics pseudo F is calculated. If this function has a 
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maximum value then the number of clusters should be estimated as the respective value of 
g corresponding to the maximum value of pseudo F. However, if the function is directly 
proportional to g then no existence of a natural cluster partition is suggested by the data.  

3.3. PSEUDO 
2T  

The statistics pseudo 2T was proposed by DUDA and HART in 1973. Let 

t l mC C C= ∪  be the union of the clusters lC  and mC . Let 2

1

nj

j ij
i

SS d
=

= ∑ , where ijd  is the 

Euclidean distance between the ith observation of cluster j and the sample mean of vector of 

cluster j, jn  is the number of elements in cluster j, j=l,m.  The statistics  pseudo 2T  is 

defined as 

 

                                            
[ ]( )

2
12

lm

l m l m

d
T

SS SS n n −=
+ + −

                                                 (4) 

 

where lmd  is the Ward´s distance defined in (1) and the denominator of (4) 

represents the total sample variance of observations in the new cluster tC . The statistics in 

(4) reduces to the square of a t-Student when p=1. In each step of the cluster algorithm the 

statistics pseudo 2T  is calculated. When it reaches its maximum value the cluster algorithm 
should be interrupted and the number of clusters of the partition should be estimated as the 

respective value of g corresponding to the maximum value of pseudo 2T or (g+1) which is 
the number of clusters related to the previous step.  

3.4. CUBIC CLUSTERING CRITERION (CCC) 

According to SARLE (1983) the Cubic Clustering Criterion (CCC) is based on the 
assumption that clusters obtained from a p-dimensional uniform distribution defined in a 
hyperbox are hypercubes of same size. The CCC value is obtained comparing the observed 

value of 2R squared intraclass coefficient with an approximation of the expected value of 2R  
calculated under the assumption that clusters are generated by a uniform p-dimensional 

distribution. Positive values of CCC indicate that the observed 2R  is larger than the 
expected under the uniform distribution and the cluster structure of the data is different from 
the uniform partition. The statistics CCC is defined as 
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where js  is  the square root of the thj  eigenvalue of the matrix  T= (X'X)/n-1, X is 

the nxp data matrix, 
p*

j
j 1

v* s
=

= ∏ , j ju s / c= , 1 / p*c ( v* / k )= , p* < p is chosen to be the largest 

integer less than k such that p*u  is not less than one. 

The CCC provides a crude test for the null hypothesis that the data have been 
sampled from a uniform distribution on a hyperbox, against the alternative that the data have 
been sampled from a mixture of spherical multivariate normal distributions with equal 
variances. SARLE (1983) presented some simulations which showed that the CCC criterion 
works well for clusters very far-apart but its performance decreases as the number of 
variables increases and the number of observations per cluster decreases.  

3.5. A PRACTICAL STRATEGY TO ESTIMATE THE NUMBER OF CLUSTERS 

In practical data analysis it is not recommended to use the pseudo F, pseudo 2T or 
CCC directly to estimate k, e.g., by creating all steps of the hierarchical clustering algorithm 
(from g=n to g=1) and taking the value of g correspondent to the best value of any of these 
stopping rules as described in sections 3.2-3.4. This is due to the fact that these rules have 
a tendency to result in an estimate of k larger than necessary when all the steps of the 
algorithm are taken into consideration. As a practical strategy is better to first use some 
criterion to define a neighborhood for the true number of clusters k (initial solution) and then 

use one of the stopping rules pseudo F, pseudo 2T or CCC to choose the best partition 
among those in the defined neighborhood. In this paper the similarity coefficient (2) 
combined with the bootstrap methodology is used  to define the neighborhood of interest.  

4. IMPLEMENTING THE BOOTSTRAP WITH WARD´S ALGORITHM  

PECK, FISHER and VAN NESS (1989) proposed the bootstrap procedure to 
construct confidence interval for the true number of clusters k of the partition. The basic idea 
is as follows: first the researcher defines an objective function L(.) used to produce a point 
estimate of  k. Given the observed sample of size n denoted by  ( )1 2, , ,x nx x x= K , where 

each ix  is a vector of px1, a certain number B of bootstrap samples are generated. They are 

denoted by x∗ , ( )1 2 ., , ,x nx x x∗ ∗ ∗ ∗= K  For each bootstrap sample the parameter k is estimated 

according to the criteria L(.). Therefore, each bootstrap sample produces a value k̂ . At the 

end, from the empirical distribution of k̂ , a confidence interval for the true k is built. In 
PECK, FISHER and VAN NESS this approach was used considering the objective criterion 

function      ˆ ˆ( ) (1/ )nL k k n SSWα= + , where 0α >  is a penalty function and SSW is the within 

sum of squares of the partition when the data set is divided into k̂ clusters by K-Means 

clustering algorithm. For each bootstrap sample the value of k̂  is the one that minimizes the 

function n
ˆL ( k ). 

The bootstrap approach proposed in PECK, FISHER and VAN NESS (1989) can 
applied in a more general sense. The user just needs to define a criteria that will be used to 
estimate k for each bootstrap sample. In this paper a strategy to estimate k was 
implemented as follows: for each bootstrap sample the Ward´s algorithm was used to cluster 
the data; in each step of the algorithm, the similarity coefficient defined in (2) was calculated 
and the candidates to be an estimate of k were chosen in each of the three similarity 
intervals: I1:[60;80); I2:[80;90) and I3:[90;95] according to the observed values of  pseudo F, 

pseudo 2T  and CCC stopping rules. If the similarity interval was not empty then it was 
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possible to obtain a point estimate of k. Therefore, for each bootstrap sample and for each 
similarity interval an estimate of k was produced by each stopping rule. The empirical 

distribution of k̂  was then obtained by using all B=1000 bootstrap samples and a 80% 
confidence interval for the true value of k was constructed by using the percentile method.  

A Monte Carlo simulation study was implemented. Several populations were 
generated with k=2,5,10,20 clusters containing 50 observations each. The number of 
random variables (dimensions) were p=2,5,10. Each cluster had its own mean vector iµ  and 

covariance matrix i
pxpΣ , i=1,2,…,k. Different degrees of correlation among the p variables 

were investigated and the normal multivariate distribution was used to generate the 
observations for each cluster. First, the clusters were simulated very far apart. Next, many 
degrees of overlapping among clusters were introduced.   

The same algorithm described by MINGOTI and LIMA (2006), which is a modification 
of the MILLIGAN´S (1985), was used to generate clusters with and without overlapping. 
Basically in each structure the clusters were simulated to possess features of internal 
cohesion and external isolation. The basic steps are described next. 

4.1. SIMULATING THE BOUNDARIES FOR NONOVERLAPPING CLUSTERS 

For each cluster, boundaries were determined for each variable. To be part of a 
specific cluster, the sample observation had to fall into these boundaries. For the first cluster 
the standard deviation for the first variable was generated from a uniform distribution in the 
interval (10; 40). The range of the cluster in the specific variable was then defined as 6 times 
the standard deviation and the cluster average was the midpoint.  Therefore, the boundaries 
were 3 standard deviations away from the cluster mean. The boundaries for the other 
clusters in the specific variable were chosen by a similar procedure with a random degree of 
separation i i jQ f ( s s )= +  among them, where f  is a value of a uniform distribution in the 

interval (0.75,1)and i js ,s ,i j,≠  are the standard deviations of the clusters i and j. For the 

remaining variables the boundaries were determined by the same procedure with the 
maximum range being limited by 3 times the range of the first variable.  The ordering of the 
clusters was chosen randomly.  See  Figure 1 for a general illustration. 

4.2. SIMULATING THE BOUNDARIES FOR OVERLAPPING CLUSTERS 

For a specific dimension let iLI  and jLI  be the lower limits of clusters i and j, 

respectively, ji ≠ , where j i iLI (1 m )range LI= − + , m being the quantity specifying the 

intersection between clusters i,j, and irange the range of cluster i, 0<m<1. Let the length of 

the interval of the intersection be defined as i iR m( range )= , i=1,2,…,(k-1). First 40% (i.e. 

m=0.40) of the observations were generated in the intersection region between any two 
clusters. Next this amount was increased to 60% (i.e. m=0.60).  In Figure 2 a general 
illustration is presented for the case where there are k=3 clusters with overlapping between 
clusters 3 and 2 (area denoted by 1R ) and clusters 2 and 1 (area denoted by 2R ). 
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Figure 1: Example of nonoverlapping clusters. iLI  and iLS are the boundaries of cluster i, i=1,2,3. 

 
 

Figure 2: Example of overlapping clusters. . iLI  and iLS are the boundaries of cluster i, i=1,2,3. 

4.3. DATA GENERATION 

In both, nonoverlapping and overlapping cases, the observations for each cluster 
were generated from a multivariate normal distribution with the mean vector equals to the 
vector containing the midpoints of the boundaries length for each of the p variables. For 
each cluster the diagonal elements of the covariance matrix were the square of the standard 
deviations obtained in the simulation algorithm described in sections 4.1 and 4.2. For p=2 
and 5 the off diagonal elements were selected according to the following structures: S1: all 
clusters had a correlation matrix equals to the identity (uncorrelated case); S2: all clusters 
had different correlation matrices and for any cluster the correlation coefficients were 
generated from a uniform distribution in the interval (0,1). For  p=10 all clusters had different 
correlation matrices and for any cluster the correlation coefficients were generated from a 
uniform distribution in the interval (0.5,1). All generated correlation matrices used in the 
simulation procedure were positive definiteness. Due to the computational time, for p=2 and 
5, 100 different simulations were obtained for each of the structures S1 and S2; for p=10 
only one structure was simulated and 100 random samples were taken from it. For each p 

and k the covariance matrix i
pxpΣ , i=1,2,…,k., was obtained by using the fact that: 

l j l jcov( X ,X ) ,l j ,ρ σ σ= ≠  where cov denotes de covariance between the random 

variables lX  and jX , ρ , l j,σ σ , are respectively the generated correlation and the standard 

deviations of these variables. The number of bootstrap samples was set as B=1000 for each 
simulated cluster structure.  

5. RESULTS AND DISCUSSION 

For the discussion presented in this section the criteria for comparison of the 

stopping rules and the similarity intervals were the average value of k̂  distribution and  the 
average confidence interval range. Table 1 presents the average results (considering all the 
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simulated structures) for nonoverlapping for each k and p. Since the results for 40 and 60% 
overlapping are similar only the results for 40% are shown in Table 2. The best results 
according to the proximity with k and the length of the average confidence interval range are 
marked as a “*”  in Tables 1 and 2. 

In general, the best similarity interval to estimate k was [60,80) for every stopping 

rule and p. For nonoverlapping the pseudo F, pseudo 2T  and CCC stopping rules had 
similar performance with some advantage for pseudo F when k=2.  The quality of the 
stopping rules decreased for overlapping when k=2 but it was still possible to obtain good 
estimates for k in the other cases and again the stopping rules presented similar results. In 
general the average confidence interval range increased with overlapping compared to 
nonoverlapping.  For a fixed k the average range increased as p increased. As expected the 
estimates of k are larger for [90,95] similarity interval. Similar to MINGOTI and LIMA (2006) 
the correlation structure of the variables did not affect much the performance of the stopping 
rules (results not shown). 
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Table 1. Results for nonoverlapping 
Similarity 

Interval (%) CCC PF P 2T  CCC PF P 2T  CCC PF P 2T  

 k=2 ; p=2 k=2 ; p=5 k=2 ; p=10 

60|-- 80 2.8; 2.53 2.8; 2.37 * 2.9; 2.61 5.1; 7.54 3.0; 3 * 4.6; 6.08 3.7; 3.8 2.8; 0.86 * 4.9; 6.27 
80|-- 90 10.6;13.2 12; 14.7 6.3; 9.8 7.0; 12.4 4.5; 6.09 7.0; 14.8 5.7; 7.5 5.5; 7.47 7.2; 12.3 
90|--| 95 19.4; 1.5 32.4; 8.1 19.3; 16,2 18.4; 4.4 55.6; 8.2 28.1; 24.6 13.1; 12.6 60.4; 8 24.4; 33.5 

 k=5 ; p=2 k=5 ; p=5 k=5 ; p=10 

60|-- 80 4.3; 0.54 * 4.3; 0.54 * 4.2; 0.65 * 5.0; 0.89 * 5.0; 0.89 * 5.0; 0.89 * 6.0; 1.8 * 6.0; 1.8 * 6.0; 1.8 * 
80|-- 90 6.6; 4.9 8.7; 10.6 7.1; 6.1 9.4; 6.4 7.3; 7.8 11.0; 14.2 6.9; 2.9 9.0; 9.2 11.5; 14.5 
90|--| 95 14.4; 16 36.8; 17 13.5; 17.1 11.4; 14.9 10.6; 13.5 18.1; 36.7 12.2; 15.9 12.0; 15.6 20.0; 30.1 

 k=10 ; p=2 k=10 ; p=5 k=10 ; p=10 

60|-- 80 8.4; 0.34 8.4; 0.34 7.3; 1 9; 0.04 * 9; 0.04 * 8.9; 0.1 8.9; 0.25 * 8.9; 0.25 * 8.9; 0.25 * 
80|-- 90 10.3; 2.7 10.4; 2.8 10.2; 2.6 * 13.4; 6.4 13.4; 6.4 13.2; 6.1 13.1; 6.2 13.1; 6.2 13.1; 6.2 
90|--| 95 13.3; 5.8 27.4; 29.9 13.6; 10.5 18.2; 18.1 13.8; 9.6 19.3; 24.4 19.7; 21.5 18.5; 18.9 22.7; 27 

 k=20 ; p=2 k=20 ; p=5 k=20 ; p=10 

60|-- 80 15.2; 0.72 15.2;0.72 12.3; 2.2 18.8; 0.24 * 18.8; 0.24 * 18.3; 0.9 19.4; 0.20 * 19.4; 0.20 * 19.4; 0.20* 
80|-- 90 18.6; 0.23 * 18.6; 0.23 * 16.7; 1.2 19.0; 0 * 19.0; 0 * 18.9; 0.08 * ---- ---- ---- 
90|--| 95 24.7; 12.3 24.9; 12.6 24.3; 11.5 29.9; 20.1 29.9; 18.4 29.0; 18.4 27.9;15.3 27.8;15.3 27.8;15.3 

Notes:  In each cell the first number is the average of k̂  and the second is the average confidence interval range for the true k. 

----: indicates that no solution was found in the interval ; * indicates de best solution according to the proximity with k and 

the length of the average confidence interval range. 
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Table 2. Results for 40% overlapping 
Similarity 
Interval 

(%) 
CCC PF P 2T  CCC PF P 2T  CCC PF P 2T  

 k=2 ; p=2 k=2  ; p=5 k=2 ; p=10 

60|-- 80 7.5; 7.6 8.1; 9.3 4.7; 3.5 * 11.3; 15.7 9.0; 10.1 * 10.2; 12.9 6.6; 2.5 * 11.8; 15.2 12.1; 15.6 

80|-- 90 26.0; 19.4 30.1; 14.1 11.5; 17.5 16.3; 13.4 14.5; 26.8 21.7; 43.3 12.0; 15.8 22.7; 39.7 22.0; 35.5 

90|--| 95 46.3; 5.1 67.8; 15.3 36.4; 16.6 43.0; 17.2 40.8; 13.2 73.1;16.2 21.7; 18.8 53.8; 12.7 68.6; 19.7 

 k=5 ; p=2 k=5 ; p=5 k=5 ; p=10 

60|--  80 14.5; 19.5 20.3; 21.4 6.4; 6.2 * 16.5; 16.9 5.1; 0.33 * 14.7; 30.2 11.3; 11.1 5.7; 12.2 * 15.3; 22.3 

80|-- 90 46.5; 6.7 57.1; 15.8 27.1; 35.1 38.0; 19.6 129.7;17.7 54.5; 70.5 17.2; 11.9 144.4; 13.7 40.6; 71.1 

90|--| 95 49.4;1.8 97.9; 14.7 62.5; 38.2 44.6; 11.5 154.8; 12.6 107.4; 49.2 43.2; 13.4 156.6; 12.9 115.2; 48.9 

 k=10 ; p=2 k=10 ; p=5 k=10 ; p=10 

60|-- 80 8.8; 1.6 * 8.8; 1.6 * 7.2; 1.3 11.2; 4.5 11.2; 4.5 10.9; 4.1 * 13.8; 7.3 * 13.8; 7.2 * 13.8; 7.2 * 

80|-- 90 17.1; 14.2 32.4; 31.9 11.8; 6.9 21.2; 24.4 12.5; 6.8 18.8; 24.8 18.2; 17.6 13.9; 8.6 19.6; 19.9 

90|--| 95 87.4; 20.4 95.1; 24.6 40.6; 60.4 34.0; 16.8 98.8; 139 60.0; 103 20.0; 12.3 140.8; 127 44.7; 70.6 

 k=20 ; p=2 k=20 ; p=5 k=20 ; p=10 

60|-- 80 15.2; 1 15.2; 1 12.1; 2.6 18.9; 0.19 * 18.9; 0.19 * 18.3; 0.78 18.9; 0.12 * 18.9; 0.12 * 18.8; 0.15 * 

80|-- 90 21.2; 8.1 * 21.5; 8.8 * 16.9; 1.8 21.8; 2.3 20.5; 1.7 * 31.5; 26.6 27.8; 18.1 24.2; 10.5 28.9; 19.1 

90|--| 95 62.5; 65.7 93.0; 41.8 28.6; 28.4 32.4; 28.4 32.4; 28.2 43.5; 68.4 30.9; 20.5 30.7; 20.3 51.3; 59.7 

Notes: In each cell the first number is the average of k̂ and the second is the average confidence interval  range for the true k ; 

* indicates de  best solution according to the proximity with k and  the length of the average confidence interval range. 
 



Mingoti & Felix - Implementing Bootstrap in Ward´s Algorithm to estimate the number of clusters 

SISTEMAS & GESTÃO, v.4, n.2, p.89-107, maio a agosto de 2009 100 

6. EXAMPLES OF APPLICATION 

In this section we will illustrate the application of bootstrap using two real examples 
involving a small and a moderate sample size. The classification variables are practically not 
correlated in the first example and correlated in the second. 

Example 1. The data set is very well-known and presented in Hartigan (1975). It 
contains the nutrients in samples of 27 different types of meat, fish or fowl.  The nutrients 
are: food energy (calories), protein (grams), fat (grams), calcium (milli grams) and iron (milli 
grams) and they are presented in percentage (the data is divided by the daily 
recommendable quantity and transformed in percentage). Some few outliers are observed 
(see Figure 3) in protein (clams canned), calcium (sardines, salmon and mackerel canned) 
and iron (clams raw and canned, beef heart). The bootstrap results are shown in Table 3. 
According to the discussion presented in section 4 we would expect to obtain better 
estimates for k in the [60,80) similarity interval. Now, the estimate of k will depend upon the 
choice of the stopping rule. CCC produces an estimate equals to 4 or 5. Pseudo F suggests 

a 80% confidence interval [7;12] and a average of 10 and pseudo 2T resulted in an estimate 

in the 80% interval [5;9] and an average k̂ =6 or 7. The CCC  had indicated the smallest 

partition ( k̂ =5), pseudo F  the largest ( k̂ =9) and pseudo 2T  a value between these two 

rules ( k̂ =7). Pseudo F resulted in the highest similarity average in the [60, 80) interval and 

CCC the lowest. The average confidence interval range were similar for Pseudo F and 2T  

but CCC resulted in the smallest value. The partitions for k̂ =5,6 and 7 are shown in Table 4 

and some descriptive statistics are shown in Table 5. The grouping produced by k̂ =6 and 7 
makes sense in terms of nutrition aspects and also recognized very well the outliers of the 
data isolating them in clusters. It can be seen that the increase of the number of groups as 
suggested by pseudo F is not really necessary. As an example, the average nutrition 

aspects for k̂ =6 is described taking into account the maximum and minimum values 
observed for each nutrient as a reference for clusters comparison (see Table 5). All clusters 
have similar average content of protein. However, they differ in the other nutrients. Cluster 1 
is richer in fat, energy and iron but has low value for calcium; Cluster 2 is rich in iron, has 
moderate values for fat and energy and low value for calcium; Cluster 3 has a moderate 
value for iron and low values for fat, energy and calcium; Cluster 4 is very rich in iron, has a 
moderate value for calcium and low values for fat and energy; Cluster 5 is rich in calcium, 
has a moderate value for iron and low values for fat and energy and finally Cluster 6 
(sardine) is very rich in calcium, has low values for energy and fat, moderate value for iron 
and the highest value for protein. 
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Figure 3. Box plot for each variable of the food data set.  

 

Table 3. Bootstrap results for food example 
                                 

Similarity 
Interval (%) 

Lower 80% 
confidence 

limit 

Upper 80% 
confidence 

limit  

Similarity 
average  

Average 

k̂  

CCC 
60 |--- 80 4 5 65.52 4.75 
80 |--- 90 4 5 81.91 4.94 
90 |---| 95 ---- ---- ---- ---- 

Pseudo F 
60 |--- 80 7 12 75.38 9.73 
80 |--- 90 11 15 87.58 13.24 
90 |---| 95 13 17 92.69 14.97 

Pseudo T2 
60 |--- 80 5 9 69.17 6.64 
80 |--- 90 8 14 85.44 10.99 
90 |---| 95 11 16 92.87 13.96 
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Table 4. Estimated partitions for k=5,6,7 - Food example 
k=5 

Cluster 1: Beef braised, beef roast, beef steak, lamb shoulder roast, smoked ham, 
                 pork  roast, pork simmered.  
Cluster 2: Hamburguer, beef canned, bamb leg roast, beef tongue, veal cutlet. 
Cluster 3: Chicken broiled, chicken canned, bluefish baked, crabmeat canned,  
                haddock fried,mackerel broiled, perch fried, tuna canned, salmon canned,  
                mackerel canned, shrimp canned 
Cluster 4: Beef heart, clams raw, clams canned. 
Cluster 5: Sardines canned 

 k=6 
Cluster 1: Beef braised, beef roast, beef steak, lamb shoulder roast, smoked ham,  
                pork roast, pork simmered.  
Cluster 2: Hamburguer, beef canned, lamb leg roast, beef tongue, veal cutlet 
Cluster 3: Chicken broiled, Chicken canned, Bluefish baked, Crabmeat canned,  
                haddock fried, mackerel broiled, perch fried, tuna canned. 
Cluster 4: Beef heart, clams raw, clams canned. 
Cluster 5: Mackerel canned, salmon canned, shrimp canned. 
Cluster 6: Sardines canned 

 k=7 
Cluster 1: Beef braised, beef roast, beef steak, lamb shoulder roast, smoked ham,  
                 pork roast, pork simmered.  
Cluster 2: Hamburguer, beef canned, lamb leg roast, beef tongue, veal cutlet 
Cluster 3: Chicken broiled, chicken canned, bluefish baked, crabmeat canned,  
                 haddock fried, mackerel broiled, perch fried, tuna canned. 
Cluster 4: Beef heart.  
Cluster 5: Clams raw, clams canned. 
Cluster 6: Mackerel canned, salmon canned, shrimp canned. 
Cluster 7: Sardines canned 

 

Table 5. Descriptive Statistics  Food example – k=6 clusters 
  Fat Energy Protein Calcium Iron 

Cluster size Mean    st. Mean     st. Mean     st. Mean    st. Mean    st. 
1 7 30.14  4.45 11.14   1.21 26.57    2.70   1.00   0.00 24.14   2.11 
2 5 14.00  4.64  6.80   1.09 29.80    2.59  1.20   0.44 28.40   4.88 
3 8  5.25  3.81  4.62   1.06 28.13    6.01  2.12   1.35 10.38   3.74 
4 3  2.33  2.31  2.67   2.08 21.00  14.18  7.00   4.36 57.67   3.21 
5 3  5.00  4.00  4.00   1.00 26.67     5.51 17.33   4.62 17.00   9.54 
6 1  9.00  0.00  6.00   0.00 31.00     0.00 46.00   0.00 25.00   0.00 

min * 27    1.00       1.00    10.00     1.00     5.00   
max * 27 39.00 13.00 37.00 46.00 60.00 

* min and max are the minimum and maximum values observed for each nutrient in the  whole data set. 

Example 2. We explored the data set presented by Spiehler (1987) which contains 
214 measurements of several types of glasses and it is available in the UCI Machine 
Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). The classification 
of types of glass is important for criminal investigation since at the scene of the crime, the 
glass left can be used as an evidence if it is correctly identified. Nine (9) continuous 
variables were considered: refractive index (RI), Sodium (Na), Magnesium (Mg), Aluminum 
(Al), Silicon (Si), Potassium (K), Calcium (Ca), Barium (Ba), Iron (Fe). Originally the data set 
had 6 types of glasses defined as: 1. building windows float processed; 2. building windows 
non float processed;  3. vehicle windows float processed; 4. containers; 5. tableware; 6. 
headlamps. Due to the high difference in variability the data was standardized. Figure 4 
shows a plot of the scores of the two first principal components (JOHNSON and WICHERN, 
2002) of the standardized data. The sample points are very spread out due to the presence 
of outliers. The bootstrap results are shown in Table 6. According to section 4 the best 
estimate for k is probably in the [60,80) interval. Due to large number of outliers observed in 
the data the estimates produced by pseudo F and CCC are too large as well the average 
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range of the confidence intervals produced for all rules. Pseudo 2T  was less affected by the 
outliers and resulted an estimate is the interval [1;27] with 80% of confidence and the 

average is k̂ =8 or 9. Is interesting to see that pseudo 2T was the only stopping rule that 
produced a confidence interval that covered the number 6 (the number of glasses types). 
From Figure 4 it is easily seen that pseudo F and CCC had indicated non-appropriated 

values for k and that pseudo 2T  resulted in a more reasonable estimate. Except for CCC 

the estimate k̂  increased highly for the similarity intervals other than [60,80). 

Table 6. Bootstrap results for Glass example 
                                 

Similarity 
Interval (%) 

Lower 80% 
confidence 

limit 

Upper 80% 
confidence 

limit  

Similarity 
Average  Average k̂  

CCC 
60 |--- 80 33 42 76.40 38.13 
80 |--- 90 40 42 85.46 38.42 
90 |---| 95 32 42 91.54 41.34 

Pseudo F  
60 |--- 80 34 53 77.47 42.42 
80 |--- 90 67 88 89.14 77.05 
90 |---| 95 104 120 94.70      112.20 

Pseudo T2 
60 |--- 80 1 27 71.96   8.44 
80 |--- 90 5 55 84.66 28.78 
90 |---| 95 19 87 91.77 49.92 
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Figure 5. Scores of the two principal components of the glasses standardized data. 

7. FINAL REMARKS 

The results presented in this paper reinforce the difficulty in estimating accurately the 
number of clusters k of a data set. However, for hierarchical clustering algorithms, the right 
combination of the similarity interval and the statistical stopping rule makes it possible to 
obtain a reasonable estimate for k using bootstrap procedure. The results of the simulation 
study show that the stopping rules considered in this paper had similar performance. The 
quality of the estimates was affected by overlapping as expected but even in those situations 
it was still possible to obtain reasonable estimates for k, except for k=2. In general an 
increase in the number of groups k had more effect on the estimates than an increase in the 
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number of variables p. It is interesting to point out that the researcher should not look for a 
solution in a higher similarity interval ([90,95]), because the estimate of k will be probably 
larger than the necessary. The length of the confidence interval range was very affected by 
the presence of outliers in the data set. 

Some of the results of this paper agreed with MILLIGAN and COOPER (1985) and 
ATLAS and OVERALL (1994) as far as the good performance of pseudo F is concerned, 
although the effects of  the amount of overlapping in the stopping rules were not discussed 
in those two previous papers. The presented results also agreed with BOWMAN et al. (2004) 

who had also noticed the good performance of  pseudo 2T for noisy data.  

This paper also showed that the bootstrap approach suggested in PECK, FISHER 
and VAN NESS (1989) is an interesting procedure and it can be used in a more general 
sense for any cluster algorithm as long as some criterion is well defined to pursue the 
optimal estimate of k. Other similarity measures, stopping rules and clustering algorithms 
can be considered. The bootstrap methodology is not just helpful to provide a point estimate 
for k but also to give an information about the stability of the solution by the observation of 
the confidence interval range.  
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RESUMO 

Neste artigo apresentamos como a metodologia bootstrap pode ser implementada em 
métodos de agrupamentos hierárquicos como uma estratégia para estimar o número de 
grupos (k).O algoritmo de Ward foi escolhido como exemplo. A estimação de k é baseada 

num coeficiente de similaridade e em três regras de parada: pseudo F, pseudo 
2T e CCC. 

O desempenho do procedimento de estimação foi avaliado através de simulações de Monte 
Carlo considerando dados provenientes de variáveis correlacionadas e não correlacionadas 
e de grupos com e sem sobreposição. O procedimento de estimação discutido neste artigo 
pode ser utilizado com outros algoritmos de agrupamento e também para a escolha de 
soluções iniciais para uso em métodos de agrupamentos não-hierárquicos.  

Palavras-Chave: Algoritmo de Ward. Estimação do Número de Grupos. Bootstrap. 


