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ABSTRACT
The presence of autocorrelation violates the hypothesis of data independence used in statistical control charts 

in the manufacturing environment. This article examines graphically, using the Mahalanobis distance, the effect of au-
tocorrelation in two measurable quality characteristics of X and Y, whose correlation and autocorrelation structures are 
from a VAR model(1). With the graphical evaluation, it is possible to understand that the presence of autocorrelation 
cannot be neglected by the users who use as statistical tool the control charts to monitor processes.
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1.	 INTRODUCTION

The products of an industrial process have quality re-
quirements that are defined by means of variables, that 
is, measurable quantities. Thanks to the existence of a sys-
tem composed of numerous random causes, economically 
unfeasible to be eliminated, it is necessary to control the 
process by means of information extracted from samples 
collected during manufacturing. The state of the process is 
judged by means of this information: whether in statistical 
control, that is, only under the influence of random causes, 
or out of statistical control, that is, under the influence not 
only of random causes, but also of special causes that al-
ter the characteristics of the product, however, Likely to be 
eliminated (Costa et al., 2005).

The monitoring of the various characteristics of a process 
stands out in the industrial scenario, as it can affect the final 
quality of the product. These processes are called multivar-
iate processes. One of the most used tools in this type of 
monitoring is the control charts, which are statistical tools 
that signal changes in the process based on the behavior of 
one or several quality characteristics of interest. Hotelling 
(1947) was a precursor in introducing techniques to simulta-
neously monitor two or more quality features from control 
charts.

Monitoring these characteristics individually is not effec-
tive when there is dependency between them. The use of 
univariate control charts for each variable of a process is a 
possible solution; however, it may not have the same effi-
ciency as the use of a multivariate control chart, a technique 
in which there is simultaneous monitoring and control of 
several related variables (Montgomery, 2004).

Although widely known in the manufacturing environ-
ment, the conditions for the use of control charts may be 
breached in some cases. Montgomery (2004) describes that 
basically all processes are governed by inertial elements and, 
when the interval between the withdrawal of the samples 
presents small intervals with respect to these forces, the ob-
servations show correlation over time. According to Mason 
et Young (2002), many industrial operations of continuous 
flow have autocorrelation and one of the possible causes is 
the gradual erosion of critical components of the process. 
Kim et al. (2010) state that the hypothesis of independence 
between observations of a variable can be violated by the 
high production rates that generate correlation and depen-
dence between the observations of neighboring products, 
according to the time of manufacture.

The monitoring of multivariate processes whose obser-
vations are autocorrelated appears in recent publications. 
Mastrangelo et Forrest (2002) provided a program to gen-
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erate autocorrelated data where it is possible to simulate 
displacement in the mean value of the variable under mon-
itoring. Kalgonda et Kulkarni (2004) presented the control 
chart of Z to monitor observations that follow a VAR mod-
el (1). The advantage of the Z chart is that it identifies the 
quality characteristic that undergoes a change in its mean 
value, that is, the graph indicates which of the quality char-
acteristics has been affected by a special cause that led to a 
change in the mean value. Pan et Jarrett (2007) and Jarrett 
et Pan (2007) proposed the use of VAR (p) model residues to 
monitor autocorrelated processes. The technique requires 
the adjustment of the model to the process data for later 
use of the residues in the T2 chart. Arkat et al. (2007) use 
artificial neural networks to monitor autocorrelated multi-
variate processes. Issam et Mohamad (2008) propose the 
use of the SVR (support vector regression) method to moni-
tor changes in the mean vector in autocorrelated processes 
from the MCUSUM control chart. Hwarng et Wang (2010) 
establishe the use of neural networks that are able to identi-
fy displacements in the vector of the means of autocorrelat-
ed processes. There are several other papers on monitor-
ing autocorrelated processes; Apley et Tsung (2002), Jiang 
(2004), Vargas et al. (2009) and Chen et Nembhard (2011) 
are some of them.

Therefore, this article aims to graphically evaluate the 
effect of autocorrelation on two measurable quality char-
acteristics X and Y when there is a correlation between the 
observations of X and Y and there is a time dependence be-
tween the observations of X and also between the observa-
tions of Y and this correlation and autocorrelation structure 
is of a VAR(1) model. It was considered in the evaluation that 
the displacement in the mean is the most important in the 
whole process and that the vector of means and the covari-
ance matrix are known or estimated with precision.

The article is organized as follows: Section 2 describes the 
model that represents the quality characteristics when there 
is autocorrelation in the process; in section 3 some charac-
teristics of Hotelling’s T2 chart are presented; the effect of 
autocorrelation on bivariate processes is discussed and eval-
uated in section 4 and, finally; a conclusion about the work 
in section 5 is presented.

2.	2 MODEL DESCRIBING THE QUALITY 
CHARACTERISTICS

The classic control procedures in multivariate processes 
consider the basic hypothesis that the observations follow 
normal multivariate distribution and are independent, with 
mean vector 0m  and variance-covariance matrix xS .

0 1, 2,...,t tX e t Tm= + =  	        (1)

In which tX  represents the observations from a vector 
of order p x 1 (p is the number of variables); te  are indepen-
dent random vectors of order p x 1 with normal multivariate 
distribution, whose mean is zero and variance-covariance 
matrix eS .

The independence hypothesis is violated in many manu-
facturing processes, which makes equation (1) inadequate 
to represent such observations. First-order autoregressive 
vectors, or VAR (1), equation (2), have been used to model 
multivariate processes with temporal correlation between 
observations of the same variable and correlation between 
observations of different quality characteristics (Mastrange-
lo et Forrest, 2002; And Nelson, 2003, Kalgonda et Kulkar-
ni, 2004, Arkat et Niaki, 2007, Jarrett et Pan, 2007, Issam et 
Mohamad, 2008, Pfaff, 2008, Niaki et Davoodi, 2009, Hwarng 
et Wang, 2010, Kim et al. 2010; Kalgonda, 2012).

In autocorrelated multivariate processes, the VAR model 
(1) is represented by:

0 1 0( )t t tX X em m−− = Φ − +      	 (2)

In which tX  is the data vector order p x 1; 0m  is the 
mean vector of order p x 1 and Φ  is a matrix with the au-
toregressive parameters of order p x p and te  are indepen-
dent random vectors of order p x 1 with normal multivariate 
distribution, whose mean is zero and variance-covariance 
matrix is eS . 

If Φ  is a null matrix, the equation (2) is reduced to equa-
tion (1), that is, this is the classical model for independent 
data over time. Otherwise, the data will be dependent over 
time and the structure of variation of the model is repre-
sented by the cross-covariance matrix (Shumway et Stoffer, 
2006). Under the assumption that the process is stationary, 

0( )tE X m= , for all t, the cross-covariance matrix will be:

 ( )( )´0 0 ( ) 0,1, 2,....t t h xE X X h hm m−
 − − = Γ = 

   (3)

being stationary means that 0m  is constant for every Xt 
and the cross-covariance matrix does not depend on t, it 
depends only on h, which represents the interval over time 
between vector tX  and htX − . 

The matrix )(hxΓ  is formed by the elements )(hijγ  pro-
vided by:

( )( )´0 0( ) , 1, 2,....,ij it jt hh E X X i j pγ m m−
 = − − =  

   (4)
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The cross-covariance matrix for h=0, )0(xΓ , when Φ  
and eS  are known, can be obtained by the relation of 
Yule-Walker (Ltkepohl, 2005). 

 ∑+ΦΦΓ=Γ exx
')0()0( 	         (5)

Suposing that tX  is a vector of data with a p-variance 
distribution and follows the model described in equation 
(2), according to Kalgonda et Kulkarni (2004) and Kalgonda 
(2012), 

[ ]0~ ; (0)t p xX N m Γ  		       (6)

If the process is in statistical control, tX  follows a normal 
multivariate distribution with mean vector 0m  and cross-co-
variance matrix (0)xΓ .

3.	HOTELLING T2 CONTROL GRAPH

One of the solutions to monitor processes with two or 
more quality characteristics was proposed by Hotelling 
(1947) through the use of 2

tT statistics. Hotelling’s T2 graph 
is a multivariate version of X  of the Shewhart’s control 
chart (Shewhart, 1931), making it the most used control 
device in monitoring the average process vector. The statis-
tic 2

tT can be calculated with a single observation of each 
quality characteristic or from the average of the samples of 
several quality characteristics simultaneously monitored. By 
means of the distribution of 2

tT  probability, it is possible 
to establish adequate control limits for Hotelling’s T2 chart 
(Mason et Young, 2002; Bersimis et al., 2007).

Assuming that the mean vector (m0) and the covariance 
matrix  (S0), the T2 control chart uses the statistical distance 

2
tT , equation (7), which has a chi-square distribution with p 

degrees of freedom (c2
(p)) when the process is in statistical 

control (Alt, 1985).

( ) ( )0
1

00
2 mm −−= ∑ −

t
T

tt XXnT  	     (7)

where n is the size of the t-th rational subgroup and tX  
is the vector of the sample means of the p variables for the 
t-th rational subgroup. When n=1, the 2

tT  statistic is redu-
ced to:

)()( 0
1

00
2 mm −−= ∑ −

t
T

tt XXT   	 	     (8)

In the T2 control graph, when the 2
tT  statistic is less than 

the upper control limit (UCL), the process remains in statis-
tical control, that is,

2 1 2
0 0 0 ( )( ) ( )T

t t t pT X X LSCm m c−= − − < =∑               (9)

When the vector of means ( 0m ) and the covariance ma-
trix (∑ 0 ) are unknown and need to be estimated, the con-
trol limits are calculated according to the monitoring phase 
(Bersimis et al., 2007).

If a special cause acts on the average of the process, mov-
ing it to a new threshold, the vector )( 0m−tX  can be rep-
resented by:

)()()( 11100 δmmmmm +−=−+−=− ttt XXX  (10)

in which ( )01 mmδ −=  indicates the magnitude of the 
displacement in the mean; thus, the statistic 2

tT  will follow 
non-central chi-square distribution ( )2

( , )p λc .

2 1 2
1 0 1 ( , )( ) ( ) ~T

t t t pX X λc m δ m δ c−= − + S − + 	
	               (11)

Some studies dealing with multivariate process control 
schemes use the parameter of non-centrality ( 2λ ) as a 
measure of displacement in the vector of means of the pro-
cess (Alt, 1985; Aparisi, 1996; Aparisi et Haro, 2001; Mason 
et Young, 2002).

     )()( 01
1

001
2 mmmmλ −−= ∑ −T   		  (12)

This measure has non-central chi-square distribution 
with p degrees of freedom and non-centrality parameter 

2λ . The mean number of samples up to the out-of-control 
signal (NMA) given by the T2 control chart is a function of the 
non-centrality parameter.

( ){ } 1
2
( , )NMA 1 Pr p LSCλc

−
 = − <  	          (13)

With the presence of autocorrelation in the process, the 
control limit of the T2 chart no longer has a chi-square distri-
bution with p degrees of freedom ( )2

( )pc  when the vector 
of means and the covariance matrix are known. Similarly, 
when there is a deviation in the vector of means, the statis-
tic 2

tT  no longer has a non-central chi-square distribution 
( )2

( , )p λc .
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4.	EFFECT OF AUTOCORRELATION IN BIVARIATED 
PROCESSES

Hotelling’s T2 chart is one of the best known in the manu-
facturing environment and the application of this technique 
is materialized in numerous articles, as can be seen in the 
multidisciplinary reference database Web of Science which 
is integrated with the ISI Web of Knowledge base. When 
searching for the keywords Hotelling and chart in the title 
of the periodicals available in December 2013, the data-
base presents 28 articles that are cited 162 times in several 
works, evidencing the importance of this technique as a tool 
in the scientific and academic environment. Figure 1 shows 
the distribution of articles per year.

Year of publica�on of the ar�cles

1996 1999 2001 2002 2005 2006 2007 2008 2009 2010 2011 2012 2013
Year of publica�on

ISI Web of Knowledge Database
Research conducted on December 10, 2013
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Figure 1. Distribution of articles found in the ISI Web of 
Knowledge database.

Source: The authors themselves.

Hotelling’s T2 chart was created to be used when the as-
sumption of independence between the observations of one 
or more quality characteristics is not violated. Disregarding 
the effect of such hypothesis is quite detrimental to the 
proper performance of the control chart tool and, for this 
reason, it has to be evaluated when monitoring a process.

We considered in this paper the distance of vector X to 
the vector of means m  called statistical distance or distance 
of Mahalanobis (Mahalanobis, 1936). This distance is the 
same used in Hotelling’s T2 control chart.

( ) ( )2 1
0 0 0

TD X Xm m−= − S −   	       (14)

The relationship between the cross-covariance matrix, 
(0)xΓ , and the elements of the matrices Φ  e eS  is ob-

tained using the equation (5). Considering the presence of 
autocorrelation and correlation from the VAR model (1), the 
distance from Mahalanobis will be:

( ) ( )2 1
0 0(0)T

xD X Xm m−= − Γ −             (15)

without loss of generality, considering the bivariate 

case in which 







=Φ

b
a
0

0
 and 

1
1e

ρ
ρ
 

S =  
 

, when 

( )0 01 020; 0m m m= = =  and the vector ( );X x y=  the 

distance 2D  Is equivalent to: 

( )
( ) ( )

3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
2

1 2 2 2 2 2 2 2 2 2 2

- 2 - 2 - - 2 - 2 -

-1 - - 2 - 1

a bx a b xy a x a xy ab y abx aby b xy b y x xy y
D

ab a b a b a ab b

ρ ρ ρ ρ

ρ ρ ρ ρ−

+ + + + + +
=

+ + + +  
(16)

The equation (16) reveals the influence of a , b and ρ in 
the distance 2D .

If 0a b= = , that is, 0Φ =  (there is no autocorrela-
tion), the distance  2D  is reduced to:

( )2 2 2 2(x -2 xy+y ) 1-D ρ ρ=   	 (17)

When there is no autocorrelation, that is, the data are 
independent, 2D  has a chi-square distribution with p de-
grees of freedom ( )2

( )pc . In order to evaluate the effect of 
autocorrelation, the bivariate and a = 0,01 ( 2

( 2; 0,01)p ac = = ), in 
which case =2D 10,5966. 

The performance of a control chart can be evaluated be-
cause of the number of samples used by the chart to detect 
an offset in the characteristic that is to be monitored. When 
there is no displacement, the process is in statistical control. 
It is expected, in this case, that the signal given by the chart 
is a false alarm. The value =2D  10.5966 is equivalent to 
a false alarm, on average, for every 200 samples evaluated 
when the Hotelling T2 chart is used (Costa et al., 2005).

Based on the VAR (1) model, the vector of process averages 
when in control ( 0m ) can undergo shifts from the order of δ  
to a new threshold ( 1m ), where δ  is an order vector (px1) 
and each element represents the magnitude of the displace-
ment in the mean value of the p-th variable. For an idea in 
terms of what happens in the mean of the process after a dis-
placement, the VAR (1) model is represented here as a func-
tion of the error vector ( te ) and the vector of means ( 0m ).

0 0
i

t i t iX em ∞
= −= + S Φ   		          (18)

If the displacement occurs in the vector of means of the 
process in control, at some instant of time t = T, then the 
mean of Xt will change from 0m  to: 
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0m δ+ 	   	          (19)

Without loss of generality, considering 0 0m = , the 
change in the means vector can be represented in three 
stages:

( )

1

1

1

t t

t t t

t t

X e t T
X X e t T

I X e t T
δ

δ

−

−

−

Φ + <
= +Φ + =
 −Φ +Φ + >         

(20)

The chart for best performance will be the one that more 
rapidly detects, from a instant of time t = T, change in the 
mean value of the quality characteristics that are being 
monitored.

In the graphical evaluation of the effect of autocor-
relation, it was considered that the displacement is de-
scribed by equation (19). For example, in a bivariate 
process, the occurrence of a special cause displaces the 
vector of means ( )0;0 02010 === mmm  to a new level 

( )mm δmδmm 2021011 ; ++= . In Sections 4.1 and 4.2, the 
graphical variation is presented along with the under-control 
process (δ =0) and with the out-of-control process ( 0δ ≠
), respectively.

4.1. Graphical evaluation of the effect of 
autocorrelation with the control process 

In an autocorrelation-free process, 0a b= =  and ρ = 
0,7, we have 2 2 21,9608 2,7451 1,9608D x xy y= − +
. The ellipse representing the distribution level curve for 

=2D  10.5966 is illustrated in Figure 2.
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Figure 2. Ellipse: 0a b= =  and ρ = 0,7.
Source: The authors.
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Figura 3. Ellipse: 0,5a b= =  and ρ = 0,7.
 Source: The authors. 

Generalizing, for a e b ϵ {0,0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 
0,7; 0,9; 0,9}, it can be observed in Figure 4 a graphical 
demonstration in which the greater the autocorrelation, the 
greater the elliptic region, that is, autocorrelation increases 
the variability of the variables of the process under moni-
toring.
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Figure 4. Ellipses: a e b ϵ {0,0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 
0,9; 0,9} and p = 0,7.

Source: The authors.

If the data are normally distributed, the ellipses of 
Figure 4 represent all points equidistant, at the distance 
of Mahalanobis, from the origin. This suggests that all 
of these points are equally likely to be governed by a 
multivariate normal distribution centered at (0,0), since 

= 00ì . In the Hotelling T2 chart, the control limit (UCL) 
equal to =2D  10.5966 generates, on average, a false 
alarm for every 200 samples collected when 0a b= =
. The same does not occur when 0,0a b= ≠ , i.e. the 
average false alarm rate does not correspond to an alarm 
for every 200 samples collected, even if the UCL value 
used is 10.5966. In practice, this means that, when we 
use the Hotelling T2 chart, considering the UCL of the chi-
square graph with p degrees of freedom ( )2

( )pc  in the 
presence of autocorrelation, will give us a false alarm 
rate different from that desired.
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4.2. Graphical evaluation of the effect of 
autocorrelation with the out-of-control process

Figure 5 shows a process free of autocorrelation with 
0a b= =  and ρ = 0,7. The dashed ellipse with center in 

(0,0) represents an under-control process and its equation is 
2 2 21,9608 2,7451 1,9608 10,5966D x xy y= − + =

. The other ellipses represent the occurrence of 
a special cause that displaces the mean vector 

( )0;0 02010 === mmm  to a new level: 

Displacement 1 à ( )01 021; 1m m= + +1ì ; being:

D2 = 1,9608x2 – 2,7451xy – 1,1765x + 1,9608y2 – 
1,1765y + 1,1765 = 10,5966  

Displacement 2 à ( )01 022; 2m m= + +1ì ; being:

 D2 = 1,9608x2 – 2,7451xy – 2,3529x + 1,9608y2 – 
2,3529y + 4,7059 = 10,5966 

Displacement 3 à ( )01 023; 3m m= + +1ì ; being:

D2 = 1,9608x2 – 2,7451xy – 3,5294x + 1,9608y2 – 
3,5294y + 10,588 = 10,5966

Figure 6 shows a process with autocorrelation with 
0,7a b= =  and ρ = 0,7. The dashed ellipse with center 

in (0,0) represents a under-control process and its equa-
tion is: 2 2 21, 4 10,06D x xy y= − + = . The value 10.06 
was used to make a fair comparison that, in the presen-
ce of autocorrelation, keeps the false alarm mean rate 
equal to one alarm per 200 samples. The other ellipses 
represent the occurrence of a special cause that moves 
the mean vector ( )0;0 02010 === mmm  To a new level: 

Displacement 1 à ( )01 021; 1m m= + +1ì ; being:

2 2 21, 4 0,18 0,18 0,054 10,06D x xy x y y= − − + − + =  

 Displacement 2 à ( )01 022; 2m m= + +1ì ; being:

2 2 21, 4 0,36 0,36 0,216 10,06D x xy x y y= − − + − + =  

Displacement 3 à ( )01 023; 3m m= + +1ì ; being: 

2 2 21, 4 0,54 0,54 0,486 10,06D x xy x y y= − − + − + =

In Figure 5, it can be observed that, in processes wi-
thout autocorrelation, the displacement in the vector of 
means caused by a special cause is represented by the 
ellipses that move away from the center in (0,0), charac-
terizing that the T2 chart, in this case, presents superior 
performance in relation to the process in which auto-
correlation is present. In Figure 6, the ellipses present 

greater resistance to remain close to the center at (0,0), 
when displacements that mismatch the mean vector oc-
cur, meaning that the performance of the T2 chart is lo-
wer when autocorrelation is present.
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Figure 5. Ellipses: 0a b= =  and ρ = 0,7. 
Source: The authors.
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Figure 6. Ellipses: 0,7a b= =  and ρ = 0,7.
Source: The authors.

5.	CONCLUSION

This article evaluated the effect of autocorrelation on 
the T2 control chart as one of the most popular tools in 
the academic and industrial environment. The distan-
ce from Mahalanobis, the same statistic used in the T2 
chart, was used to represent geometrically the behavior 
of a process in the presence and absence of special cau-
ses that affect the average value of the quality characte-
ristics monitored.

The violation of the autocorrelation hypothesis should 
be taken seriously and verified before the use of the gra-
phic control statistical tool, since the presence of auto-
correlation affects the performance of traditional control 
charts, reducing the ability to detect deviations in the 
mean vector.
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The use of ellipses illustrated how the data of a pro-
cess behave in the presence of autocorrelation, masking 
the effect of the displacement that occurs when the qua-
lity characteristics said in statistical control shift to the 
situation of out of statistical control.

It is suggested, in future works, the presentation of 
statistics or techniques that improve performance of 
control charts in the presence of autocorrelation.
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