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ABSTRACT

Water column variances in the aquatic environment, motivated by either natural or anth-
ropogenic processes, may impact the stability of trace metals in the sediment of Santos
Port Complex (SPC), located in southeast Brazil. Trace metals such as Cu, Zn, Ni, Pb, and Cd
potentially negatively affect ecological and biological compartments in estuarine water. To
evaluate the status of the sediment of the SPC, the present article investigated the geo-
chemical fraction of sedimentary trace metals by applying the BCR (European Community
Bureau of Reference) sequential extraction approach. Organic matter and fine grain size,
characteristic of an estuarine environment, showed a direct influence on the concentra-
tion dynamics of trace metals in sediments, especially for Pb, Cd, and Ni. In the specific
case of Zn and Cu, there was a potential source of contamination in the port. The largest
fraction of the metals studied was non-residual, potentially mobilizable in an environment
where variation in the physicochemical parameters of the water column is highly variable,
something frequent in estuarine environments.
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INTRODUCTION

As a result of the nature of port activities, transport com-
plexes are generally installed in geomorphologically protec-
ted areas, safe from strong open sea hydrodynamics. In ad-
dition, for the beneficiation, transformation, and circulation
of transported raw materials and industrial products that
arrive and leave the portuary site constantly, an industrial
park is installed nearby, resulting in the consequent human
settlement of the entire region. Thus, natural confined sites
such as estuaries and bays are suitable environments for de-
veloping this type of activity (Iglesias et al., 2021). On the
other hand, estuaries and bays, due to their strong water
physic-chemical gradients derived from the transition bet-
ween freshwater on the continent and salty marine waters,
present a great biodiversity, representing one of the most
productive ecosystems around the planet (Barbier et al.,
2011; Pinto and Marques, 2015). Additionally, the calm wa-
ter body works as a nursery for marine organisms that use
this environment to reproduce and feed (Kotzé, 2016). The-
refore, despite their great ecological importance and thus a
high degree of sensitivity, port regions represent one of the
environments most altered by human activities (Gillanders
et al., 2011; Vermeiren and Sheaves, 2014; Kotzé, 2016).
Among the most critical impacting factors existing in the
day-to-day life of the ports are the constant dredging, waste
disposal, constant transit of vessels, high population density,
and waste generation, among others.

The natural characteristics of estuarine environments
make these ecosystems even more complex from an ecolo-
gical point of view (Sun et al., 2015; Zhang M. et al., 2017;
Duggan et al., 2019; Izegaegbe et al., 2020). Their geomor-
phologically protected water, with low hydrodynamic fluxes
and restricted water exchange with the adjacent sea, results
in lower oxygen levels in the water column, which is propi-
tious to the concentration of contaminants on its sediment,
composed of fine-grained particles and high levels of orga-
nic matter (Guerra-Garcia and Garcia-Gome 2004). So, many
ports are known as critically polluted sites, representing a
real threat to the local living organisms (Galkus et al., 2012;
Zaaboub et al., 2014).

The marine environment has become polluted due to a
wide range of contaminants sourced from several anthropo-
genic activities, and this has prompted worldwide attention
for a long time (Adekunle, 2012; Eliku and Leta, 2018). Tra-
ce metal pollution in estuarine ecosystems is an increasing
challenge, as most trace metals beyond threshold concen-
trations are potentially toxic to living organisms (Prabhaka-
ran et al., 2016). These elements can find their own ways to
enter the food web in the environment. However, the toxi-
city and associated damage of individual metals are relati-
vely well studied with established baselines (Yi et al., 2021).

Estuarine ecosystems are highly dynamic sites that are
often coupled with seawater dilution effects and various an-
thropogenic inputs. All environmental parameters can then
further affect trace metal bioassimilation since they influen-
ce interactions between heavy metals and the aquatic bio-
ta. Thus, the comprehension of trace metal bioavailability
is not an easy task; it requires the integration of all major
contributing factors, such as different environmental varia-
bles, multi-heavy metal mixtures, and their speciation (Gu
and Gao, 2021), when attempting to investigate processes
that dictate the relation between trace metals and the biota.

Total levels of trace metal recording in the sedimentary
pool do not represent an effective indicator when the object
is the evaluation between natural and anthropogenic sour-
ces (Relic et al., 2010, Passos et al., 2011, Okoro et al., 2012)
and its potential bioavailability (Zhong et al., 2011). For this
purpose, recent authors have applied sequential partial ex-
traction approaches to evaluate the specific chemical forms
associated with sedimentary phases and metal sources
(Hang et al., 2009; Davutluoglu et al., 2011).

One commonly used sequential extraction approach is
the BCR (European Community Bureau of Reference) me-
thod. The BCR method divides trace metals into four groups:
exchangeable and easily soluble fractions, easily reducible
fractions, oxidizable fractions, and residual fractions. The
first three fractions theoretically represent the potentially
available fractions that under physicochemical fluctuations
of the water column, are made available. The last represents
a difficult fraction to mobilize (Sahara et al., 2015), conside-
red naturally inert.

The main object of the present study was to diagnose the
status of sedimentary trace metals to allow the dynamic pro-
jection of the geochemical distribution under variations of
the physicochemical parameters of the water column in the
Santos Estuarine System (SES).

Study site

The SES (Figure 1) consists of a coastal region severely
modified by countless human activities of the most diver-
se nature, resulting in several potential pollution sources,
including a vast industrial complex, intensely populated
areas, and agricultural, and portuary activities. One of the
most significant sources is Cubatdo industrial park, located
in the Santos watershed basin (Azevedo Netto et al., 2022),
which concentrates petrochemical, steel, chemicals, fertili-
zers, and logistics, as well as energy production and services
and whose activities present potential punctual and diffu-
se sources of pollutants. Parallelly, the same region is un-
der the influence of irregular depositions of industrial solid
waste caused by port activities, sewage treatment stations,



submarine outfalls, and clandestine discharges of domestic
sewage and sanitary landfills. Finally, SUS is still the target
of constant impacts generated by the maintenance of the
Port of Santos, the largest port complex in Latin America,
where periodical dredging activities are carried out (Figure
1). On the other hand, the coastal region receives many tou-
rists during the summer (Azevedo Netto et al., 2022), with
traditional fishing being an important economic activity in
the region (Hortellani et al., 2008).

METHODOLOGY

Sampling

A sampling campaign was carried out on May 21. 32
sampling spots were distributed along the main estuarine
channel, as shown in Figure 1. Water column physicochemi-
cal characterization was made at surface and bottom water
depths during the ebb tide. Salinity was evaluated with a
multiparameter Horiba U10 probe.

Additionally, with the same approach as Netto et al.
(2021), past data was also used to reinforce the accuracy of
the physical analysis of the waters. The average of all data
groups used was compared with the trace metal concentra-
tions and other environmental parameters (pH, Eh, dissol-
ved oxygen, and salinity).
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A stainless Van Veen grab was used to maintain sediment
composition integrity and avoid contamination during se-
diment sample collection. Then the samples were properly
packaged and stored under refrigeration (~-20 °C) until
analysis. The following analysis was carried out on the sedi-
ment samples: the sediment grain size, total organic carbon
(TOC) levels, phosphorus concentrations, and metals (Ni, Cu,
Zn, Cr, and Pb) were determined.

Laboratorial Analysis

Trace metal samples were maintained in pre-acidified
plastic bowls and transported to the laboratory for analysis.
For the grain size evaluation, a pre-treatment process was
used, degrading the organic matter with hydrogen peroxide
(H202). Posteriorly, the grain size was measured by a Micro-
trac S3500 grain size analyzer. The results were classified into
sand, silt, and clay according to the sediment composition.

Then, the fine material (below 0.063 mm) was used to ex-
tract the trace metals. Sequential extraction was performed
using the BCR approach. After samples were centrifuged and
further diluted, trace metals (Pb, Cu, Ni, Zn, and Cd) were
analyzed by Inductively Coupled Plasma-Atomic Emission
Spectrometry. The detection limits of the method are, res-
pectively: Pb, 15 mg/kg; Cu, 1.5 mg.kg-1; Ni, 0.1 mg.kg-1; Zn,
0.4 mg.kg-1; and Cd, 0.4 mg.kg-1.
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Figure 1. Study area and sampling stations
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Statistical analysis

The normal distribution of the data was tested with the
Shapiro-Wilk test. Spearman’s correlation was used to eva-
luate the relationship between trace metal data and envi-
ronmental parameters.

RESULTS AND DISCUSSION

Sediment trace metal levels represent potentially reason-
able indicators of the state of an ecosystem (Forstner and
Wittmann, 1981). Once trace metals enter the estuary, they
promptly become associated with the particulate phase and
sink to the subaquatic bottom (Hanson et al., 1983). The de-
cantation process depends on several water column features,
such as pH, Eh, ionic strength, organic and inorganic matrix-
es, and the available surface area for adsorption caused by
variation in grain size distribution (Davis et al., 1991). The
combination of trace metals with fine particles (silt and clay)
is attributed to co-precipitation or complexation reactions of
these elements on particle surfaces, determining the distri-
bution pattern of trace metals in sedimentary pools (Ho et
al., 2010). In the present study, grain size records are pre-
sented in Figure 2. Size is a fundamental property of sed-
iment particles. It determines particle diffusion and depo-
sition through the environment and thus provides relevant
information about the sediment’s provenance, transport
history, and depositional conditions (Kenneth Pye, 2004). In
the present study, the finer grain size fraction was present
along all the sampling stations, being more concentrated in
the estuarine inward area, where the lower hydrodynamic
conditions permitted its deposition.

Sediments consist of multi-phase matrixes composed of
silicates, carbonates, hydroxides/oxides, sulfates, and orga-
nic substances as major components (Zhu, 2006). Organic
matter, in turn, shows the capacity to retain, reduce mobi-
lity, and consequently reduce trace metal bioavailability (Im-

pellitteri et al., 2002; Woliniska et al., 2018). Therefore, orga-
nic compounds play an important role in forming complexes
and retaining heavy metals in a potentially mobilizable form
(Aydinalp and Marinova, 2003).

In the present study, the organic matter levels varied bet-
ween 3,5 and 22,5%. Contrary to expectations, the higher
concentrations were in Santos’s channel due to the greater
currents in this area. On the other hand, the water salinity,
proper from open sea water, may promote estuarine floccu-
lation and aggregation mechanisms, carrying the dissolved
organic matter to the subaquatic bottom pool (Boyle et al.,
1977; Sholkovitz, 1978; Davis, 1984; Gibbs, 1986). Thus, the
estuarine physico-chemical particle settlement mechanism,
together with the existence of a submarine outfall and the
potentially active processes of flocculation, can explain this
distribution.

Among the pollutants present in estuarine environments,
a critical role is played by trace elements, which, under cer-
tain water column conditions, are potentially toxic to living
species and are transmitted through the trophic chain (Ro-
sado et al., 2016a, b; Tarnawski and Baran, 2018). Trace ele-
ments deposited in bottom sediments can potentially threat
aquatic organisms. Moreover, in the case of improper sedi-
ment management, e.g., from the dredging of port evolu-
tion basin sediment, they can also pose the danger of having
a toxic impact on land biota.

Some authors demonstrated that flocculation of dissol-
ved organic matter in estuarine environments may enhance
sedimentation of organic-metal complexes derived from ter-
restrial ecosystems (Sholkovitz, 1978; Sholkovitz et al., 1978;
Wells et al., 2000; Turner et al., 2002; Stolpe and Hasselldv,
2007; Biati et al., 2010; Samani et al., 2014; Heidari, 2019).
As seen in Figure 3, total trace metal concentration data re-
vealed two distribution patterns. The first one was followed
by Ni, Pb, and Cd, which showed the same appearance as
organic matter levels. This data reveals the importance of
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Figure 2. Fine-grained particle distribution
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correlation. The same can be said for Cu and Zn since both
metals presented significant correlations with fine-grained
particles. On the other hand, organic matter showed to be

preponderant for Cd and Pb sediment accumulation.
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Table 1. Spearman test results

(1e3o1) po

-0.213

0.399

-0.020
-0.117

0.384
0.407

(1e3ol) ad

0.004

0.361

0.262

0.257

0.546

0.407

(1e301) IN

-0.062

0.288

0.051

0.051

0.546
0.384

(jezor) uz

0.470

0.160

0.868

0.051

0.257
-0.117

(1ezor) no

0.453

0.217

0.868

0.051

0.262
-0.020

(%) o

0.392

0.217

0.160
0.288
0.361

0.399

azs
uiesn aul4

0.453

0.470
-0.062

0.004
-0.213

Fine fraction

Mo (%)

0.392

Cu (Total)

Zn (Total)

)

Ni (Total
Pb (Total)
Cd (Total

)

Ni BCR fractions (%)

(00077

7222272222277\
22222222277}
NN

778
72772

100%
90%
80%
70%
60%
50%
40%
30%

0
10%

oxidizable  Eresidual

& reducible

exchangeable and soluble

Pb BCR fractions (%)

100%
90%
80%

Roxidizable  Eresidual

B reducible

exchangeable and soluble

Cd BCR fractions (%)

777722722727

V7777727777777
S/ TN
22777777\
1222222272277\
NN
7277222727777\
2222222222277\
NN
1222222227277
72722277 AN

7777722222228

Sy NN
z77277727722727227727777 A\

7777772777777

V77772727777772777

S/

Ezzzzzz22722722777 - NN

SV NN

V77727727788

100%
90%

oxidizable  Mresidual

& reducible

exchangeable and soluble

Sedimentary trace metal fractionation reflects the metal
binding processes in sediments. The dynamic of metal frac-
tionation in these sediments is a result of the differences

2010).

’

between each metal source and its particular affinity with
environmental matrixes and particular physicochemical res-
ponses. Generally, metals sourced from human activities are
presented in the potentially mobilizable fractions, whereas
metals derived from natural geologic sources are in the resi-

dual fractions (Passos et al.
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Figure 4. Studied trace metal BCR fractions



In the present study, a significant amount of all studied
metals was associated with the non-residual phase, indica-
ting that all trace metals are potentially bioavailable. In the
non-residual sediment fraction, the speciation status and
potential bioavailability of trace metals primarily depend on
the binding of these elements to solid particles, their pre-
sence in ionic form in the water column, or their being ad-
sorbed on the surfaces of sediment mineral/organic matter/
microorganisms complexes. In this sense, the results showed
that the subaquatic bottom’s stored trace metals may be re-
mobilized from the sedimentary pool via natural or anthro-
pogenic mechanisms. The first hypothesis may be the result
of the water column’s physicochemical conditions variation
(e.g., pH, redox potential, organic matter, and salinity) (Wu
et al., 2015), as a result of estuarine tidal and saline wedge
oscillations. On the other hand, the constant dredging work
necessary to maintain the depths in the vessels’ evolution
basin can affect the stability of the bottom sediments and
thus remobilize the pollutants deposited back into the water
column (Monte et al., 2019). So, according to the present
study, especially Cd and Pb showed less association with the
most stable fraction.

In aquatic bodies, the non-residual trace metals are trans-
ported as dissolved, colloidal, or particulate elements or
compounds associated with available natural matrixes like
organic matter, Fe and Mn (oxyhydr) oxides, and clay par-
ticles, which are omnipresent in aquatic ecosystems and
present a high metal sorption ability (Singh and Subrama-
nian, 1984; Parker and Rae, 1998; Warren and Haack, 2001;
Pokrovsky and Schott, 2002; Hassellév and von der Kammer,
2008; Nystrand et al., 2012). According to the present study,
the organic phase recorded omnipresence for all the studied
trace metals as a result of the organic matter’s significant
availability in estuarine areas, where the high productivity
and the water exchange restriction permit its accumulation.
After organic matter enters the environment, it produces
trace metal organic complexes due to abundant carboxyl,
hydroxyl, amine, and other organic particle surface reactive
groups, increasing its adsorption capacity (Kulikowska et al.,
2015; Zhou et al., 2015). Some authors have suggested that
Cu is able to form complexes with organic matter (Manceau
and Matynia, 2010; Moon and Peacock, 2012; Karlsson et
al., 2006) or organic matter-copper mineral ternary com-
plexes (Strawn and Baker, 2009). So, in the present study,
sequential extraction analysis confirmed organic matter as
an important matrix immobilizing local Cu. Recorded data in
the present article suggested that the dynamic of the other
studied trace metal mobility is also associated with high or-
ganic matter concentrations, as shown in Figure 4.

In the same way that Cu, Pb, and Zn have great affinity
with the hydroxyl functional group available on mineral
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surfaces like kaolinite, oxides, oxyhydroxides, and Fe and Al
hydroxides (Smith et al., 1995). According to Silveira et al.
(2003), iron oxides are the most relevant soil constituents
for retaining heavy metals. The authors’ affirmation is appli-
cable to the present case, except for Ni and Cd, trace metals
that recorded negligible participation in the reducible phase
in most sampling stations. According to Qion et al. (2020)
and Ma et al. (2021), sediment minerals are the main consti-
tuents of solid sediment matrices, and clay minerals are the
most impacting elements in sediments that primarily inclu-
de layered silicate minerals and crystalline and amorphous
oxide matrixes that significantly influence the immobility
and diffusion of trace metals.

The most dangerous fraction of trace metals stays in the
free ionic species, which are highly mobile and easily bioa-
vailable (Sunda and Lewis, 1978; Luoma, 1983). In the pre-
sent study, this fraction was shown to be less important for
Cu. The other metals, on the other hand, recorded a signifi-
cant contribution from the soluble or exchangeable fraction.

CONCLUSIONS

Heavy metals are increasingly present in the environ-
ment, representing risks to ecological health when in anom-
alous concentrations. Their total concentrations do not al-
low for the projection of the potentially deleterious effects
these elements offer. Its toxicity is associated with the par-
ticular characteristics of each metal and the ligand matri-
ces available in the environment since these will define the
mobility of trace metals. In the present study, metals were
present at unnatural levels in most sampling stations. Organ-
ic matter and fine grain size, characteristic of an estuarine
environment, directly influenced the concentration dynam-
ics of trace metals in sediments, especially for Pb, Cd, and
Ni. In the specific case of Zn and Cu, there was a potential
source of contamination in the port. The largest fraction of
the metals studied was non-residual, potentially mobilizable
in an environment where variation in the physicochemical
parameters of the water column is highly variable, some-
thing frequent in estuarine environments. More studies are
needed to assess the effective negative effects of metals on
the Santos estuarine ecosystem.
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