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ABSTRACT

In Brazil, the development of the mechanistic-empirical method for the design of flexi-
ble pavements, MeDiNa, requires parameters related to the mechanical characteristics of 
materials, including resilient behavior. The resilient strains are obtained in the laboratory 
with the Triaxial Repeated Load Test, but the equipment necessary for its execution still re-
quires substantial investment capital. Given the evolution of computational modeling and 
the possibility of acquiring fast and reliable results through intelligent systems, this work 
aimed to build Artificial Neural Networks capable of predicting the Resilient Modulus of 
cement-improved soils from their physical characterization. The quality of the models was 
measured by statistical indexes and an analysis of the differences in the design results 
using the predicted values compared to those obtained in tests. In addition, statistical 
analyses were made to verify the change in the properties of the soils studied after adding 
the binder. The results indicate improvement in the resilient behavior of the materials, but 
not linearly proportional to the addition of cement. Concerning the prediction of the Re-
silience Module, good results were obtained for the analyzed indices and, consequently, 
little or no difference between the dimensioned structures. The Artificial Neural Networks 
developed in this work showed superior performance compared to those published regar-
ding the magnitude of the prediction errors.

Keywords: Prediction; Resilience Module; Artificial <Neural Networks.
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INTRODUCTION

The mechanistic approach to pavement design had its 
first contributions in the 1950s from Hveem, who pub-
lished correlations between loads, deflections, and cracks 
in asphalt pavements. In the same decade, computational 
progress expanded research, allowing more refined analy-
ses of the state of stresses and strains acting on the side-
walk.

Nowadays, mechanistic theory occupies a prominent po-
sition in the world literature (Han et al., 2018; Khasawneh 
and Al-Jamal, 2019it is very important to accurately charac-
terize the mechanical behavior of unbound material layers 
and subgrade soils. In pavement analysis using the elastic 
layered theory, material properties in terms of dynamic 
elastic modulus and Poisson’s ratio are the major input pa-
rameters. The dynamic elastic modulus of pavement ma-
terials or resilient modulus (MR; Ren et al., 2019; Haider, 
Masud, and Chatti, 2020base resilient modulus (MR; Qian 
et al., 2020; Brizolla de Mello et al., 2021; Chegenizadeh et 
al., 2022) due to the possibility of analyzing the mechanical 
behavior of the materials composing the structures closer 
to reality. Thus, it is evident that there is a global trend to 
adopt this type of approach in pavement design, given the 
performance improvements that can be achieved due to a 
better understanding and modeling of structures.

Given the difficulty in developing and using authentic 
mechanistic methods, the so-called Mechanistic-Empirical 
(M-E) approach emerged, using field observations to cali-
brate the equations relevant to the analyses. Some coun-
tries have already adopted the M-E approach for some de-
cades, such as the United States of America, South Africa, 
and Portugal. The changing trend, added to the limitations 
of the empirical method (Chiarello et al., 2019; Franco, 
2007; Vendrusculo et al., 2018) adopted until then in Brazil, 
made a new pavement sizing method, MeDiNa (National 
Sizing Method), emerge in 2018, based on the Multi-Layer 
Elastic Analysis (MLEA) routine, which allows predicting the 
pavement’s performance regarding fatigue and permanent 
deformation throughout its service life, enabling the sizing 
of more durable and safer structures for users.

MeDiNa addresses the deformability analysis of paving 
structures under traffic loading conditions. In this context, 
using the Resilience Module (RM) is more appropriate than 
the method based on the California Bearing Ratio (CBR), 
which cannot translate the failure mechanisms of flexible 
pavements because they are associated with the stress 
state developed by the repetition of loads. The consider-
ation of the resilient behavior of the materials allows for 
estimating the appearance and intensity of cracks and fis-
sures that cause highway structural deterioration. In addi-
tion, MeDiNa admits to using chemically treated materials, 

highlighting the RM variation between the beginning and 
end of fatigue service life.

In chemically treated materials, there is the addition of 
binders that modify soil properties or create a matrix that 
surrounds or cements the grains. Such a process can oc-
cur by adding lime (Andavan and Pagadala, 2019; Cheng 
et al., 2018; James, 2020), cement (Hataf, Ghadir and Ran-
jbar, 2018; Solihu, 2020; Ayininuola and Abidoye, 2018), 
bitumen (Çalisici, 2018; Oluyemi-Ayibiowu, 2019; Dantas 
Neto, Pereira, and Abreu, 2020) and industry rejects, such 
as those from rock and mineral processing (Martins and 
Belchior, 2018), rice husk (Silva, Bello, and Ferreira, 2020), 
and other possibilities (Miraki et al., 2022; Choobbasti, Sa-
makoosh and Kutanaei, 2019; Hataf, Ghadir, and Ranjbar, 
2018).

According to Hanandeh, Ardah, and Abu-Farsakh (2020), 
there is a difference between chemical stabilization and 
soil improvement. The small addition of chemicals to dry 
the soil to the point where the compaction process can be 
satisfactorily carried out is called enhancement. The addi-
tion of products to the point of providing bonds with the 
soil grains would be stabilization. Despite this difference, 
both are related to cation exchange capacity and pozzola-
nic effects. The soil stabilized with cement should meet the 
density, durability, and resistance requirements, resulting 
in a hard material with bending stiffness, and the cement 
content is usually between 6% and 10% in dry weight. For 
improved soils, the content used is between 2% and 4%, 
being able to modify the soil concerning plasticity and sen-
sitivity to water and, according to the National Department 
of Transportation Infrastructure (2006), also allowing con-
sideration of the layer’s flexibility.

Despite all the technical gains associated with the de-
velopment and use of MeDiNa, in practice, obtaining the 
necessary parameters to feed the calculation routine is a 
limiting factor, as in the case of RM and Permanent Defor-
mation (PD). The resilient or recoverable strains can be ob-
tained in the laboratory through the Repeated Load Triaxial 
(RCT) Test; however, the equipment required for its exe-
cution requires substantial investment capital because it is 
too expensive compared to the traditional tests. Moreover, 
it requires special training for operators and technicians, 
making its execution on construction sites unfeasible.

In some countries, this obstacle has been minimized 
by making use of predictive modeling (Zeghal and Khoga-
li, 2005; Solanki, Zaman, and Ebrahimi, 2009; Saha et al., 
2018; Khasawneh and Al-jamal, 2019it is very important 
to accurately characterize the mechanical behavior of un-
bound material layers and subgrade soils. In pavement 
analysis using the elastic layered theory, material proper-
ties in terms of dynamic elastic modulus and Poisson’s ratio 
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are the major input parameters. The dynamic elastic modu-
lus of pavement materials or resilient modulus (MR; Farh, 
Awed, and El-Badawy, 2020) based on Artificial Neural Net-
works (ANNs), one of the most widely used techniques of 
Artificial Intelligence, which can identify patterns in large 
databases and make predictions with a high reliability rate.

In Brazil, Viana (2007), Ribeiro (2016) and Ferreira 
(2008) used ANNs for predicting RM in soils from the in-
terior of the State of São Paulo, the Metropolitan Region 
of Fortaleza, and soils distributed throughout the national 
territory, respectively. In all works, the great potential of 
using this method was observed; however, in some factors, 
such as data regionalization in the works of Viana (2007) 
and Ferreira (2008), the high error values made the use 
of some developed networks unfeasible, giving rise to the 
search for refinement and improvement of the results ob-
tained so far.

ANNs are composed of artificial neurons in which each 
unit is called Perceptron, which, in turn, comprises input 
signals (data that feed the system), synaptic weights, bias, 
activation functions, and output. The ANN learning pro-
cess is the result of sequential adjustments of the synaptic 
weights until the model responds as close as possible to 
what is desired. ANNs may present the most varied archi-
tectures, i.e., the number of layers and neurons in each. 
One or more intermediate or hidden layers may be be-
tween the input and output layers. When modeling them, 
the goal is to find the number of intermediate layers, num-
ber of neurons, learning algorithms, and transfer functions 
in each one of them so that the generated results are op-
timized.

ANN must face training, validation, and test phases to 
generate the expected result and present it to the data pat-
terns. Routinely, the patterns constituting the database are 
randomly divided for the mentioned phases, and most of 
them, approximately 70%, belong to the training set.

The learning process can be unsupervised, reinforced, 
or supervised. Supervised learning consists of presenting 
a training set of input patterns and their results to the net. 
With the validation set, the net can compare the results 
generated with what is expected and, if necessary, adjust 
the weights until the output value meets the defined er-
ror criteria. The great advantage of supervised learning 
lies precisely in the possibility of comparing the generated 
value with the expected one, allowing the accuracy of the 
outputs to be verified and quality criteria to be established 
for the model through, for example, the acceptable limits 
to the measured errors. When the errors reach values con-
sidered small, one can admit that the training was suffi-
cient to provide the necessary adjustments.

Given the Brazilian scenario and the development of 
technologies, the goal was to create prediction models for 
the RM values of Brazilian soils with small cement addi-
tions based on data from the physical characterization of 
soils, reducing technical and economic limitations relevant 
to the execution of the TCR test. These predictive models 
will be built using ANNs, and their quality will be measured 
by statistical parameters. Their applicability will be tested 
by comparing the pavement structure design in MeDiNa 
with the predicted information and the reference informa-
tion on the resilient behavior of the materials used.

METHOD

Laboratory analysis and statistical treatment

The data used in this research come from tests per-
formed on samples taken from 29 borrow pits used on BR 
158/GO and PE 270. Particle size, Atterberg limits, modified 
energy compaction, CBR, and TCR tests were performed for 
each sample. The TCR tests were performed at the Pave-
ment Engineering Laboratory of the Federal University of 
Campina Grande (LEP-UFCG). The others were performed 
by the companies STS (Serviços Técnicos de Sondagem/
Technical Drilling Services) and PDCA Engenharia, follow-
ing the standards:

• DNER ME 041/94 – Soils - Preparation of samples 
for characterization tests;

• DNER ME 080/94 – Soils - Sieving granulometric 
analysis; 

• DNER ME 082/94 – Soils - Determination of plas-
ticity limit;

• DNER ME 122/94 – Soils - Determination of liquid-
ity limit;

• DNER ME 129/94 – Soils - Compaction using non-
worked samples;

• DNER ME 049/94 – Soils - Determination of Califor-
nia Support Index using unworked samples;

• DNIT ME 134/2018 sendo permitida reprodução 
parcial ou total, desde que citada a fonte (DNIT– 
Pavement - Soils - Determination of the resilience 
modulus.

For the compaction tests CBR and RCT, three test speci-
men (TS) were molded from each deposit, one of natural 
soil and two with cement addition, type CP II 32 F - RS by 
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dry weight, at percentages of 2% and 3%, totaling 87 sam-
ples for each test. These samples underwent the compac-
tion process soon after wetting. The TSs submitted to the 
RCT test were stored in a humid chamber for seven days. 
Given the low levels of cement added, these samples can 
be called “cement-improved soils,” justifying their testing 
according to the same standard used for natural soils (DNIT 
ME 134/2018), which allows the practice of tests for “soils 
and materials improved by small amounts of additions of 
chemicals or natural fibers (...), provided that they are not 
chemically stabilized.”

After executing the experimental plan, a database was 
built by compiling the test results plus the TRB classifi-
cation in an electronic spreadsheet with 22 columns and 
1566 rows, each row representing an ANN input pattern. 
As the data collected for ANN development are of different 
types, they had to be preprocessed to make them totally 
numeric. The TRB Consistency and Classification Limits are 
originally presented in alphanumeric type. Thus, the infor-
mation referring to the limits was assumed to be “zero” 
when Non-Liquid (NL) or Non-Plastic (NP). The TRB classifi-
cation lost the character “A” that begins all nomenclatures 
and had the “a” and “b” replaced by “1” and “2,” and the 
dash (-) by a comma (,).

After the abovementioned adaptations, the database 
was submitted to statistical treatment to identify outliers. 
Points located above and below the respective Upper Limit 
(UL) and Lower Limit (LL) of the interquartile range (IQR) 
were considered outliers. These values were analyzed one 
by one for their exact correction or exclusion, aiming to mi-
nimize noise and error generation in the modeling without 
compromising the quality or size of the database. There 
was a reduction of 3.45% in the number of input patterns; 
therefore, the database went from 1566 to 1512 lines (pat-
terns). After this treatment, the data was normalized since 
they are of different orders of magnitude, and using them 
in their original form could bias the results.

Analysis of resilient behavior

The analysis of the changes in the resilient behavior of 
the soils after adding cement contents for their improve-
ment after adding the binder was performed by statistical 
analysis for each sample studied. The verification, or not, 
of the statistically significant change in the RM was done 
through hypothesis tests. These same tests were also used 
to verify whether the addition of the binder changed the 
optimum moisture content of the mixtures and whether 
there was a gain in CBR values.

The first test performed was the Analysis of Variance 
(ANOVA), which has the independence of observations, 

normal distribution of sample groups, homogeneity of vari-
ances, and absence of outliers as assumptions. These as-
sumptions must be verified and met for correctly applying 
this type of test. The normality of distribution was exam-
ined using the Shapiro-Wilk test, and the homogeneity of 
variances was analyzed using Levene’s test. The results in-
terpreted by analyzing the p-value compared to the adopt-
ed significance level (α), which was 0.05 in this research.

After executing the mentioned tests, it was verified if all 
ANOVA assumptions were met. If so, we proceeded with 
the Analysis of Variance to confirm whether or not a statis-
tically significant change in the mean RM value occurred. 
In the case of samples where the assumptions were not 
met, the non-parametric test corresponding to the one-
way ANOVA was performed, in this case, the Kruskal-Wallis 
test. The conditions for its use refer to the comparison of 
at least three different and independent samples with six 
observations that can be ranked. The Kruskal-Wallis test is 
routinely used when ANOVA cannot be performed to check 
for equality of parameters between groups. Because it 
does not require normality in the distributions, it is called a 
non-parametric test. When this test indicates a difference 
between at least one group of samples, we proceed with 
Dunn’s test to identify which group is in question.

By performing the tests for the three groups (natural, 
+2%, and +3%), it was possible to verify whether adding a 
binder brought about changes in the resilient behavior of 
the material compared to its natural state.

ANN Modeling

In this stage, ANNs were built to predict the RM based 
on the results of the geotechnical characterization tests 
using the MATLAB software. The training was of the super-
vised type, where the set of expected results is provided 
together with the input data. The ANNs were composed 
of three layers (input, hidden, and output). The input layer 
was made up of 16 variables (cement percentage, percent-
age passing sieves 50.8 mm (2”), 25.4 mm (1”), 9.5 mm 
(3/8”), 4.8 mm (no. 4), 2 mm (no. 10), 0.42 mm (#40), and 
0.074 mm (#200), LL, LP, TRB classification, optimal mois-
ture, MEASM, CBR, expansion, confining stresses, and devi-
ation), the intermediate had a variable number of neurons, 
multiples of 4 between 4 and 48, and finally, the output 
layer had only one neuron, MR.

Feed-forward Backpropagation networks were chosen 
because they are capable of solving non-linearly separable 
problems, and three different types of training functions 
were used, namely: Bayesian regularization (TRAINBR), 
Levenberg-Marquardt (TRAINLM), and Gradient Descent 
(TRAINGD). Regarding transfer functions, the possible 
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combinations between Linear, Sigmoidal Logistic, and Hy-
perbolic Tangents were tested. The networks’ performance 
was verified through the values of the Coefficient of Deter-
mination (R²) and Mean Square Error (MSE), electing the 
network with the best results for RM prediction from these 
parameters and training time.

Pavement dimensioning 

After choosing the best ANN to predict the RM of soils 
with cement addition, its results were compared to the 
predicted RM values, calculating the absolute error of each 
standard. Of the 87 soil samples, the three that present-
ed the highest Mean Absolute Error (MAE) value of the 18 
pairs of stresses corresponding to a TCR test were chosen.

The three samples mentioned were used for flexible 
pavement design using MeDiNa. For comparison purposes, 
for each structure sized and analyzed with the predicted 
values, one was sized for the values obtained in the RCT 
tests.

The dummy structures were sized according to the ini-
tial MeDiNa pattern for layers 1, 3, and subgrade. Layer 1 
is composed of RJ-type asphalt concrete (AC) CAP 30/45 
#12.5mm Sepetiba with 8.8 cm of initial thickness; layer 
3 is clay soil LG’ (1) with 20 cm; and the subsoil is silty soil 
NS’. In these layers, there was no change in any physical 
or mechanical characteristic of the materials. The paving 
base with a thickness of 20 cm, numbered as layer 2, had 
an initial thickness fixed at 20 cm; Poisson coefficient, 0.35; 
Los Angeles Abrasion, 41%; permanent deformation model 
with regression coefficients Ψ1 = 0.1608, Ψ2 = -0.097, Ψ3 
= 0.525, and Ψ4 = 0.0752. The physical characteristics and 
regression coefficients of the non-linear resilient model 
were changed according to the material adopted.

As for the traffic data, the MeDiNa default was also 
used, with the road type being the primary arterial system, 
average daily volume in the 1st year of 1370, standard sin-
gle axle double wheel vehicle, design period of ten years, 
and total N of 5.00 x 106.

The results of the structures modeled with the RM val-
ues predicted by the ANN and those determined in the 
laboratory were compared for final layer thickness, Wheel 
Track Sinking (ATR), and Cracked Area at the end of the de-
sign period.

RESULTS AND DISCUSSION

Laboratory tests

The results of the samples’ granulometry and consisten-
cy limits allowed classifying the materials according to the 
TRB, noting that all samples are granular and have excellent 
to good behavior as subgrade, namely: 17.24% type A-1-a, 
20.69% type A-1-b, 55.17% type A-2-4, and only 6.9% type 
A-2-6. Concerning the group index, all of them presented 
GI = 0. The percentage of samples passing sieve #50.8 had 
a value of 100% in all samples, defining it as a constant in 
the context of this research. This resulted in excluding this 
variable from all other statistical verifications and its use as 
input data for the ANNs to be built.

Compaction and CBR tests were performed for all sam-
ples (natural, +2%, and +3%) since the added cement con-
tents could cause changes in the optimum moisture con-
tent due, for example, to the hydration required for binder 
activation and an increase in the CBR value due to the pos-
sible increase in CP stiffness.

To verify the significance of the change in moisture con-
tent in the three test conditions, statistical tests of mean 
comparison were performed. Initially, it was attempted to 
proceed with the Analysis of Variance (ANOVA); however, 
when performing the Shapiro-Wilk test to verify the nor-
mality of distribution at a significance level of 5%, it was 
found that the samples with the addition of 2% and 3% of 
cement did not have a Normal distribution, violating one 
of the assumptions necessary to perform the ANOVA and 
directing the data analysis to non-parametric methods.

The result of the Kruskal-Wallis test indicates that, with 
95% certainty, the data tested do not show significant dif-
ferences. After the tests, it was noticed that the addition of 
cement in percentages of 2% and 3% did not significantly 
alter the optimum moisture content of the samples, as was 
previously expected. It is possible that the amounts used 
were so small that they did not cause this type of change 
or that there was not enough time for complete hydration 
of the binder since compaction occurred immediately after 
hydration.

The statistical procedure for analyzing the CBR variation 
was the same as that used for the compaction test results. 
As for normality, the Shapiro-Wilk test proves its existence 
for the three sample groups. Levene’s test verified the ho-
mogeneity of variance among the samples, and the result 
showed that the variances are not homogeneous for α = 
0.05. Because the ANOVA assumptions were not met, the 
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Kruskal-Wallis test was performed, which indicates, with 
95% certainty, that there is a difference in at least one sam-
ple group. To verify which groups are different from each 
other, the Dunn test was performed, and it could be veri-
fied through a p-value < 0.05 (a condition to reject the null 
hypothesis) that all groups are different from each other.

According to the tests performed, adding cement to the 
samples influenced the CBR value, most likely due to the 
increased stiffness of the TSs due to the hardening of the 
binder and its effects on the soil matrix. The samples with 
2% binder showed an average increase of 39% in the CBR 
value. The lowest percentage gain in CBR occurred for the 
samples from deposit 9 of the order of 10%. Still on this 
same cement content, the quarries 11, 13, 18, 21, 22, and 
29 showed an increase in CBR of more than 50%. For add-
ing 3% cement, the average increase in CBR value was 70%, 
and the samples from quarries 11, 16, 17, 18, 21, and 22 
reached more than a 100% increase in CBR value compared 
to the natural samples.

The expansion results were not analyzed this way since 
70% of the samples did not expand.

Resilient behavior 

For each of the 87 samples, the RCT tests were per-
formed according to the DNIT 134/2018sendo permiti-
da reprodução parcial ou total, desde que citada a fonte 
(DNIT-ME. The samples with 2% and 3% cement additions 
went through the wet curing process for seven days before 
undergoing the test.

Table 1 presents the averages of the eighteen RM values 
obtained for each sample and the results of the statistical 
tests performed to verify the influence of cement addition 
on the resilient behavior of the samples. The Shapiro-Wilk, 
Levene, ANOVA, Kruskal-Wallis, and Dunn tests were per-
formed. The Shapiro-Wilk test verifies the normality of 
each group of samples, so it presents a p-value for each 
molding condition (natural, +2%, and +3%). The Levene, 
ANOVA, and Kruskal-Wallis tests generate a single p-value 
as they analyze the statistical significance of the homoge-
neity of variances, similarity of means, and populations, re-
spectively. Dunn’s test checks for differences between the 
sample groups, so there is a p-value for each combination 
(Natural and +2%; Natural and +3%; +2% and +3%). When 
the conditions for performing an ANOVA were not met, the 
Kruskal-Wallis test was performed.

Table 1. Mean RM and p-value of the statistical analyses of the 
TCR test results

RM (MPa)

Nat. 2% 3%

Quarry 1 494 1074 1324

Quarry 2 759 952 1017

Quarry 3 810 1075 936

Quarry 4 736 1248 1280

Quarry 5 428 1118 1386

Quarry 6 453 1019 857

Quarry 7 462 794 1132

Quarry 8 529 1293 1257

Quarry 9 709 1209 1392

Quarry 10 429 1048 1778

Quarry 11 788 1054 1035

Quarry 12 628 818 916

Quarry 13 476 829 760

Quarry 14 637 730 1212

Quarry 15 559 696 1113

Quarry 16 726 781 932

Quarry 17 546 811 883

Quarry 18 550 773 1093

Quarry 19 361 1028 1073

Quarry 20 562 883 1285

Quarry 21 517 775 726

Quarry 22 544 643 644

Quarry 23 401 705 791

Quarry 24 413 841 947

Quarry 25 344 989 1346

Quarry 26 312 845 1320

Quarry 27 463 1377 1658

Quarry 28 433 1616 1787

Quarry 29 420 1563 1497
Source: The authors

The results of the statistical tests indicate that samples 
11, 16, and 22 showed no statistical difference, with 95% 
certainty, between the results of Resilience Modulus for 
the three test conditions because they presented a p-value 
for the ANOVA or Kruskal-Wallis test greater than 0.05. For 
the other samples, knowing that all analyses were perfor-
med at the 5% significance level, it was possible to verify 
the differences between the resilience moduli of the sam-
ples by comparing them one by one for each condition of 
the test specimen. Statistical differences are verified by 
analyzing the value obtained in Dunn’s test. When this va-
lue is higher than the adopted significance level, it is inter-
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preted that the groups tend to present equal values of the 
variable in question. When it is lower, the groups present 
different values. Thus, we have the following comparisons:

Natural soil and soil + 2% cement: The 2% increment of 
cement in the natural soil significantly improved the RM 
values of almost all samples. Only the sample from deposit 
15 showed no gains at the 2% content;

Natural soil and soil + 3% cement: The sample with 3% 
cement from deposit 3 showed no change in resilient be-
havior compared to the natural soil sample. The other de-
posits showed significant gains;

Soil + 2% and soil + 3% cement: In only 17% of the sam-
ples (quarries 7, 14, 15, 18, and 26), there was a signifi-
cant difference in RM between the 2% and 3% content. The 
other samples’ results indicate no difference between the 
addition of 2% or 3% binder, i.e., the addition of 3% cement 
would increase the service cost without increasing the me-
chanical benefits in terms of resilient behavior.

Summarizing the analyses of the change in resilient be-
havior of the materials under study when improved with 
cement at 2% and 3%, it was found that the addition of the 
binder had beneficial effects, but that in most cases there 
was no difference in the gains in resilient behavior when 
adding 2% or 3%, and it was then more economical to add 
the 2% binder.

ANN Modeling 

Table 2 shows how the net training combinations were 
created at the time to contain the best-performing net, as 
will be described later. A total of 648 nets were trained, 
216 for each type of training algorithm considered (Ba-
yesian Regularization, Levenberg-Marquardt, and Gra-
dient Descent). The learning algorithms considered were 
Gradient Descent (LEARNGD) and Gradient Descent with 
Momentum (LEARNGDM). All nets were created with th-
ree layers, so two transfer functions are required: the first 
between the input and hidden layers and the second bet-
ween the hidden layer and output layer. This work used all 
the possible combinations of Linear, Logistic Sigmoidal, and 
Hyperbolic Tangent transfer functions for each training and 
learning algorithm.

For each net configuration, architectures with 4, 8, 12, 
16, 20, 24, 28, 32, 36, 40, 44, and 48 neurons in the hidden 
layer were tested, and up to 10,000 training epochs could 
be reached. The performance of the nets can be measured 
through processing time, MSE, and R².

After modeling all ANNs, the network with the best re-
sult was selected based on the highest R² values and the lo-
west MSE value. Of the 100% of input patterns of networks 
with the Gradient Descent training algorithm, 70% were 
randomly assigned to training, 15% to validation, and 15% 
to testing. These networks presented the least satisfactory 
results, as the highest R² value reached was 0.8217 for a 
network with LEARNGDM, Tangent Sigmoidal, and Linear 
algorithms and transfer functions, respectively. Regarding 
errors, the smallest MSE generated was of the order of 10-
3. Another characteristic observed for this training set is 
the small processing time and the range of 10,000 epochs 
in virtually all nets.

The data set of nets with the Levenberg-Marquerdt trai-
ning algorithm were divided similarly to those of Gradient 
Descent and showed better results, as higher R² values 
(0.9840) and lower MSE values (3.32 x 10-4) were obser-
ved. Regarding the stopping criteria, none of the nets rea-
ched 100 training epochs because this algorithm is pro-
grammed to stop if the number of six consecutive failures 
in the validation phase is reached. This was the main rea-
son for stopping the training of these nets, which occurred 
most of the time in fractions of a second.

Finally, we have the results of nets built with Bayesian 
Regularization. This algorithm has the characteristic of re-
moving non-relevant synaptic weights from the training 
process, and it has its own validation criteria, so there is 
no need to divide the input data into three phases. In this 
case, 70% of the data was used for training and 30% for 
testing. The network number 101 was chosen as the best 
for presenting the highest R-value and, consequently, R² 
(0.9903), considered an excellent adjustment and one of 
the lowest MSE (2.77 x 10-4), with LEARNGD learning algo-
rithms and the two Sigmoidal Tangent transfer functions. 
Its training time was 03:44 minutes for 1069 epochs, with a 
16:36:1 architecture. It was found that, of the total number 
of weights (649) composing the network, 500 were effec-
tively used.

It is assumed that the good performance of the Bayesian 
Regularization training algorithm was due to its adaptation 
and generalization characteristics for small databases since 
the database was composed of only 1512 patterns, a num-
ber not considered high for this type of modeling. After 
training the network, the predicted output values were ex-
tracted and transformed to the original order of magnitude 
since all network inputs and outputs occurred with normed 
data. This step was necessary to determine the regression 
coefficients for the Resilience Module Composite Model.
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Pavement Dimensioning

After transforming the previously normalized RM output 
data into MPa units, the MAE was calculated between the 
actual values obtained in laboratory tests and those pre-
dicted in the modeling. The objective was to identify the 
samples that represented the most unfavorable conditions 
in terms of the predicted RM so that one could evaluate 
them regarding their sensitivity and possible consequences 
in pavement design and stress analysis.

It was observed that the higher the MR values, the 
higher the MAE. Generally, the samples with 3% cement 
added reached higher MR values compared to those with 
2% added and the natural ones due to the order of magni-
tude of the values. Thus, quarries 9, 20, and 25 contain the 
samples with the highest MAE, on the order of 100 MPa, 
all of the soil with 3% cement addition (samples 27, 60, and 
75), as shown in Table 3.

Six flexible pavement structures with three layers each 
were designed. Layers 1 and 3 are the defaults of MeDiNa 
itself, as well as the traffic data, and the base layer, called 
layer 2, is composed of the previously mentioned samples. 
Regarding the adoption of the nonlinear resilient behavior 
model, three structures were designed based on the test 
results, and the others were designed based on the results 
obtained from predictions with the chosen ANN. The phy-
sical characteristics of layer 2 were also defined from la-
boratory tests of the samples. The Poisson coefficient and 
the Permanent Deformation model were adopted for the 
Graded Gravel - Gneiss C1 from the MeDiNa database.

The regression coefficients k1, k2, and k3 of the Compo-
site Model and R² for the tested and predicted RM values 

of each sample and the cracked area for the end-of-period, 
total Roadway Rutting (ATR), and final thickness of each 
layer are presented in Table 4. Regarding the regression 
coefficients, it can be seen that all the values of k1 and 
k2 are positive, indicating the increase in RM as a function 
of the confining stress and that the k3 values were negati-
ve for samples 60 and 75, leading to less influence of the 
deviation stress in their behavior. The k1 reached higher 
values for the modeling situation using the predicted va-
lues. Sample 27 was the most affected, with a difference of 
approximately 16% compared to the value model with the 
test data. The opposite behavior occurred for k2, in which 
the predicted values resulted in lower values of this coef-
ficient. Except for sample 27, for k3, the other values were 
very close.

For the paving design, changing only the resilient model 
parameters of the base course and fixing the fatigue and 
permanent deformation models of all materials, it was no-
ticed that there was a 3.3% and 0.2 mm reduction of the 
cracked area at the end of the design period and ATR, re-
spectively, for sample 27 and 2.7% and 0.1 mm for samples 
60 and 75 for using the predicted data compared to the 
real ones. The reductions presented did not lead to chang-
es in the thickness of the layers of the structure for sam-
ples 27 and 75. Only sample 60 presented a reduction of 1 
cm in the thickness of the asphalt concrete.

CONCLUSIONS

The results showed that adding low cement contents to 
natural soils can bring gains regarding the improvement of 
resilient behavior; however, there is no direct relationship 
between the increase in content and the RM values. In this 

Table 2. Part of the ANN configurations
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Net No. Archit. Epochs Time MSE R R²
93 16:4:1 94 00:00:00 3,86E-03 0.95554 0.913057
94 16:8:1 302 00:00:03 1,40E-03 0.98314 0.966564
95 16:12:1 237 00:00:04 9.44E-04 0.98834 0.976816
96 16:16:1 273 00:00:07 6.14E-04 0.99194 0.983945
97 16:20:1 333 00:00:12 5.23E-04 0.99302 0.986089
98 16:24:1 968 00:00:56 4.82E-04 0.99355 0.987142
99 16:28:1 974 00:02:18 4.22E-04 0.99419 0.988414

100 16:32:1 702 00:01:33 3.98E-04 0.99406 0.988155
101 16:36:1 1069 00:03:44 2.77E-04 0.99515 0.990324
102 16:40:1 2166 00:08:32 3.32E-04 0.99424 0.988513
103 16:44:1 977 00:05:22 3.15E-04 0.99333 0.986704
104 16:48:1 2539 00:14:05 2.83E-04 0.99508 0.990184

Source: The authors
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study, the addition of 3% of cement CP II 32 F - RS to the 
soils studied did not exceed the gains for resilient behavior 
compared to those with a 2% addition.

Regarding the prediction of RM values using ANNs, good 
results were observed in the developed modeling, with 
high R² values (above 0.99) concomitant with low MSE val-
ues (around 10-4). Despite the quality of these statistical 
indexes, there were differences in the estimates of cracked 
area and ATR in the paving design. The structures dimen-
sioned with the predicted values undersized these param-
eters; despite this, only one of the samples showed a dif-

ference of 1 cm in the thickness of the asphalt concrete 
layers.

The results indicate the great potential of using ANNs 
to predict the soil’s resilient behavior. Given the countless 
architectural possibilities, transfer functions, and learning 
algorithms, in addition to the possibility of verifying the 
quality of the networks by other statistical quality indi-
cators and the increase in the database, it is possible to 
obtain results that are closer to the real ones and, conse-
quently, similar to the final design of the pavements.

Table 3. Highest Sample Absolute Mean Error

Confinement 
Stress (MPa)

Deviation 
Stress (MPa)

Sample 27 Sample 60 Sample 75

Real RM (MPa) Predicted RM 
(MPa) Real RM (MPa) Predicted RM 

(MPa) Real RM (MPa) Predicted RM 
(MPa)

0.020 0.020 746 848 589 660 967 1028
0.020 0.040 838 793 516 629 859 894
0.020 0.060 614 768 668 639 707 827
0.035 0.035 1042 1111 855 866 984 1226
0.035 0.070 954 1036 784 874 978 1065
0.035 0.105 976 1030 940 976 1018 1032
0.050 0.050 1242 1372 1077 1225 1665 1649
0.050 0.100 1189 1302 1080 1224 1246 1429
0.050 0.150 1231 1348 1140 1315 1197 1324
0.070 0.070 1487 1589 1540 1655 1718 1858
0.070 0.140 1387 1545 1434 1517 1359 1565
0.070 0.210 1508 1640 1349 1488 1280 1390
0.105 0.105 1765 1978 1838 2050 1846 2007
0.105 0.210 1902 2025 1694 1903 1638 1759
0.105 0.315 1868 2090 1727 1870 1513 1656
0.140 0.140 2084 2262 2117 2260 1918 2156
0.140 0.280 2118 2278 2005 2185 1792 1951
0.140 0.420 2075 2270 1773 1953 1549 1705
MAE 131 129 123

Source: The authors

Table 4. Regression Coefficients and Pavement Design Results

Sample 27 Sample 60 Sample 75
Tested Predicted Tested Predicted Tested Predicted

k1 6311.95 7350.75 7027.03 7434.74 4334.27 4691.48

k2 0.5512 0.5174 0.6854 0.6643 0.5853 0.5771

k3 0.0033 0.0686 -0.0782 -0.0712 -0.2052 -0.2026

R² 0.9854 0.9743 0.9678 0.9722 0.9227 0.9625

Cracked area (%) 23.9 20.6 29.1 26.4 26.3 23.6

Total ATR (mm) 5.2 5 5.3 5.2 5.3 5.2

Thickness layer 1 (cm) 5 5 6 5 5 5

Thickness layer 2 (cm) 20 20 20 20 20 20

Thickness layer 3 (cm) 20 20 20 20 20 20
Source: The authors
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