Abandoned vessels in Guanabara Bay and their environmental implications

Marilia Nascimento

marilianascimento@id.uff.br

Fluminense Federal University – UFF, Niterói, RJ, Brazil

Ana Dalva de Oliveira Santos

santosanadalva@gmail.com

Fluminense Federal University – UFF, Niterói, RJ, Brazil

Alex da Silva de Freitas

alexsilfre@gmail.com

Fluminense Federal University – UFF, Niterói, RJ, Brazil

Rejany Ferreira dos Santos

re_geoffp@yahoo.com.br

Fluminense Federal University – UFF, Niterói, RJ, Brazil

Rachel Ann Hauser-Davis

rachel.hauser.davis@gmail.com

Oswaldo Cruz Foundation – FIOCRUZ, Rio de Janeiro, RJ, Brazil

Estefan Monteiro da Fonseca

oceano25@hotmail.com

Fluminense Federal University – UFF, Niterói, RJ, Brazil

José Antônio Baptista Neto

jabneto@id.uff.br

Fluminense Federal University – UFF, Niterói, RJ, Brazil


ABSTRACT

Moving, wrecked, abandoned, and drifting vessels drastically impact everything from coastal habitats to fishery resources, tourism, and recreation. Recently, the ship São Luís, stationed in Guanabara Bay, collided with the Rio-Niterói Bridge. This accident brought up the problem of marine pollution from water traffic. This study aims to evaluate the risks of accidents and the environmental contamination from abandoned vessels in this estuary. The methodology included a broad bibliographic compilation of studies on this relevant body of water, such as metal pollution, endocrine disruptors, paints, microplastics, emissions, ballast water, garbage, oil, and cargo residues. The results point to significant risks for the bay. In this case, specific legislation is a must, especially with the development of practical strategies, monitoring, and environmental management plans for this important ecosystem.

Keywords: Water pollution; Marine accidents; Ecological risks.


INTRODUCTION

Maritime transportation, especially in the era of globalization, accounts for approximately 90% of the different types of cargo transported worldwide (Eronat et al., 2019; Harlaftis, 2020). However, maritime safety is a global concern, mainly due to the risks of serious accidents with human, economic, social, and environmental losses (Liu et al., 2021; Lan et al., 2023). Small, medium, or large vessels represent different pathways of pollution released into water bodies. These contaminants include petroleum products, paints, plastics and microplastics, ballast water, and trace metals (Amara et al., 2018; Baptista Neto et al., 2020; Gaylarde et al., 2021; Vacholz et al., 2022; Nascimento et al., 2022; Santos et al., 2022).

Specifically, anti-fouling paints or biocides that prevent the development and attachment of fouling organisms are highly harmful to biota (Terlizzi et al., 2001). According to Gaylarde et al. (2021), paint fragments in the oceans mainly arise from marine activities. Non-aqueous paints are considered plastics belonging to the polymer family (Gorni, 2003). Paint fragments can also release, by carriage, other types of contaminants into the aquatic environment (Yebra et al., 2004; Koutsaftis & Aoyama, 2007).

According to Alencar (2021), the increase in the circulation of ships in Guanabara Bay is impressive. In 2009, the port of Rio received 1,568 ships, and, in an increasing spiral between 2009 and 2014, the increase in the number of vessels was around 231% (Alencar, 2021). Besides ships, platforms, and tug boats, other types of vessels that contribute to pollution are associated with the anthropic occupation of their surroundings. Such factors are determinants of its continuous pollution degree, with cumulative and synergistic effects that severely interfere with the quality of marine life in the bay (Silva et al., 2018).

Considering that abandoned or drifting vessels range from risks of collisions (which may cause human losses) to serious ecological impacts on the bay, in this context, mitigating actions by the competent agencies and other social actors that work together in the preservation of this important estuary are essential and urgent (Benjamin & Figueiredo, 2020; Ocampo & Pereira, 2019). In addition, over the years, fishery resources, tourism, and recreation have been drastically affected (Dagola et al., 2022). Therefore, assessing the impacts of abandoned boat accidents in this ecosystem is a topic of broad environmental relevance.

METHOD

For this work, a broad literature review was carried out. The research was conducted in databases such as Capes journals, Scielo, Google Scholar, Ensp/Fiocruz, and ScienceDirect.

Study area

The Guanabara Bay watershed is one of the most expressive areas in the country in terms of social, economic, and cultural aspects. It is located between latitudes 22°40' and 23°00' S and longitudes 043°00' and 043°20' W (Kjerfve et al., 1997). It has an enormous population contingent and intense urbanization, with 16 municipalities around it (Amador, 2012). The hydrographic region in which it is inserted measures approximately 4,000 km², and its water mirror is around 384 km². It has 59 km² of islands and 91 rivers and channels (Amador, 1997). Rio de Janeiro city grew along the bay's margins due to its geomorphology and drainage network, which ensured good penetration in addition to clean waters and an excellent self-depuration system responsible for recycling the volume of urban discharges at the time.

According to studies, during the last 100 years, the surrounding catchment area has been greatly modified by anthropic activities such as deforestation and disorderly occupation (Amador 2012; Fonseca et al., 2013). The bay's surroundings are home to several industries, including oil refineries, marine oil terminals, ports, fishing activities, solid waste dumping sites, and agricultural activities. Mainly in the northeast region of its drainage basin, several pollutants are introduced, responsible for the contribution of sewage dumping, metals, nutrients, hydrocarbons, organochlorines, pharmaceuticals, and sediments (Amador, 2012). Associated with this, there is an enormous contingent of slums without access to basic sanitation, a fact that directly affects the bay (IBGE, 2014).

F

The current environmental degradation of this estuary has promoted severe socio-environmental impacts and much damage to fishing activities, a social problem for several communities that made a living from fishing. In addition, tourism, which, before the industrial and population expansion of the metropolitan region, was a sector of relative importance, is currently practically nonexistent (Soares-Gomes et al., 2016). The domestic sewage discharge into the bay without any treatment is another serious obstacle to be solved, mainly because the pollution can cause damage to the conservation and ideal conditions for the survival of organisms (Carreira et al., 2004). Figure 1 shows the Guanabara Bay map, and Figure 2 shows abandoned vessels along the bay.

F

RESULTS AND DISCUSSION

F

The environmental risks concerning old vessels are numerous, mainly because, according to Law No. 12.815 of June 5, 2013, Decree No. 8.033 of June 27, 2013, and ANTAQ Resolutions, Art. 37, sole paragraph, vessels older than 30 years without proven documentary evidence of retrofit will not be accepted at the Port of Santos. Also, according to Marselou et al. (2019), the end of the life cycle of ships has an average operational activity of 30 years. In this case, ship recycling can be an opportunity to reuse materials, help the economy, and contribute to human and environmental health. In this context, the process of decommissioning ships offers alternatives such as complete or partial removal, the creation of an artificial reef, relocation, and recycling (Bull & Love, 2019). Table 1 shows studies on water pollution from nautical activities, and Figure 3 illustrates the approximate average operational activity of polluting ships from nautical activities.

F

According to Alencar (2021), accidents with vessels in Guanabara Bay are not uncommon. Some examples include the accidents occurred in November 2011, when the catamaran Gávea I, carrying 907 passengers, collided twice with a decommissioned pier in Praça XV, and 54 people were injured. In May 2015, the Vital Brasil ferry of old construction (1962) collided with a floating pier when arriving at the Cocotá platform in Ilha do Governador, where 700 people were stranded for more than two hours waiting for help. In July of this same year (2015), the ferry Boa Viagem collided with a wall at Praça XV station with 900 people on board, leaving 15 passengers injured (Alencar, 2021).

Recently, on November 14, 2022, the bulk carrier São Luís, adrift in Guanabara Bay, collided with the Rio-Niterói bridge, officially called President Costa e Silva. The bridge connects the cities of Rio de Janeiro and Niterói, separated by Guanabara Bay. The bridge was inaugurated on March 4, 1974, and is 13 km long, of which 9 km are over the bay. In this collision, fortunately, there were no injuries, but it generated much apprehension and a massive 3-hour traffic jam until the structures were verified for impact. This collision brought out the need for discussion about the exposure to risks associated with the circulation of vessels in the bay, especially regarding abandoned and drifting ships, which need imperative solutions regarding the continuous pollution by different contaminants and the dangers of accidents (Alencar, 2021). Besides the risks of collisions, ship container accidents are equally severe and complex due to the quantity of cargo (Hlali & Hammami, 2019), especially since container pollution does not receive due attention because of deficiencies in management regulations (Wan et al., 2022).

In Brazil, coastal areas are under intense environmental degradation, especially by anthropogenic pressure in their surroundings (Sanches Filho et al., 2021; Silva et al., 2021; Dias et al., 2017; Fonseca et al., 2011). In this case, industrialization near coastal areas is a huge source of contamination (Adyasari et al., 2019). Guanabara Bay is the subject of different studies that expose the pollution levels from various industries, including shipping (Silva et al., 2021). Among the research on pollution in Guanabara Bay are studies on trace metals in sediments. This complex environmental matrix is considered to be an enormous reservoir for a huge variety of substances. Therefore, they are excellent pollution indicators, especially from anthropic activities (Birch et al., 2020).

According to Baptista Neto et al. (2005), in Guanabara and Sepetiba Bays, located in the state of Rio de Janeiro, Guanabara Bay presented high levels of Zn, Pb, Cu, and Cr, possibly due to pollution from the rivers that flow into its waters, such as industrial, naval, latex, and ship paint waste, among others. In Sepetiba Bay, the traces of metals analyzed present a diffuse pattern (Ferreira et al., 2013; Ferreira et al., 2020). Moreover, according to da Silva et al. (2014), in two tributaries of the Guanabara Bay, the rivers Guaxindiba and Caceribu, Mn may pose contamination risks, especially to aquatic biota (Baptista Neto et al., 2006; Baptista Neto et al., 2013; Fonseca et al., 2013; Melo et al., 2015). Trace metals have been detected in Perna mussels from the Brazilian coast (Ferreira et al., 2013), and in organisms such as Dules Auriga, the bioavailability of metals has been observed (Hauser-Davis et al., 2019; Hauser-Davis et al., 2021).

As far as the oil industry is concerned, its impact on the environment is related to cumulative and synergistic effects. As an energy matrix, oil is a significant polluter (Landquist et al., 2013; Taylor et al., 2014; da Silva, 2022). Its effects can be long-term as it is a fossil fuel composed mainly of polycyclic aromatic hydrocarbons and, thus, organic pollutants that accumulate along food chains (Silva et al., 2021). As clarified by Euzebio et al. (2019), the exposure of individuals to oil spills can cause physical, psychological, genotoxic, and endocrine effects. Another risk associated with PAHs is their ability to be highly toxic, even when detected in small amounts in the environment (Ifegwu et al., 2015; Resende et al., 2016; da Silva, 2022).

Endocrine disruptors detected in the waters and sediments of Guanabara Bay signal serious risks to biota and human health (Viganò et al., 2008; Nascimento et al., 2018; Cunha et al., 2020; Santos et al., 2022). In Maracanã River and Canal do Mangue, tributaries of the bay, the presence of endocrine disruptors corroborates potential risks to animals, humans, and the environment by carriage (Nascimento et al., 2022). Similarly, the results obtained in mangroves and lagoons surrounding the bay indicate risks and a greater need for monitoring (Pinto et al., 2019).

The issue surrounding marine debris, especially plastic, is that it is a highly persistent pollutant (Galgani et al., 2010; Hale et al., 2020). According to Agamuthu et al. (2019), over 100 million macroplastic particles are present in the seas, with 51 trillion microplastic particles (<5 mm) floating on the ocean surface. In addition, ingestion of MPs contaminates marine animals, including microorganisms (Carvalho and Baptista Neto et al., 2016; Baptista Neto et al., 2020). Furthermore, as Gaylarde et al. (2021) clarify, paint particles are a significant part of microplastic pollution in oceans, with serious ecological effects. These fragments come from paints used on different boat types and, by carriage, introduce other contaminants, such as trace metals and biocides (Gaylarde et al., 2021).

Studies in the metropolitan region of Rio de Janeiro reflect the presence of pollutants. Tonnes of solid waste from different polluting sources continuously flow into the Bay (Baptista Neto et al., 2011; Duarte and de Miranda, 2021). This quantity of garbage results from urban densification in the 17 municipalities surrounding its hydrographic region (Bernardino & Franz, 2016; Pinto et al., 2022; Elk et al., 2022). Thus, this work may contribute to the discussion of studies that address the different risks and reinforce the urgency of systematic actions, monitoring, and mitigation for the quality of life in Guanabara Bay.

CONCLUSION

Accidents in Guanabara Bay with abandoned and drifting vessels may have severe implications concerning accidents, human casualties, and significant environmental losses. Pollution can occur widely, from the water column on the surface and bottom to sediments, beaches, lagoons, and even mangroves. The impacts of bioaccumulation and persistence can also reflect economic and social losses, besides directly affecting the quality of life of the population living in their surroundings.

The degradation of the bay is associated with the activities performed, such as cleaning and maintaining ships and oil platforms, ballast water, oils, paints, garbage, metals, and other chemical compounds released into its waters over the years. In this case, adequate and integrated planning through specific legislation and dialogues with different social actors, such as politicians, academics, fishermen, and the population, is essential. Actions that contemplate the preservation and mitigation of the ecological quality of this significant ecosystem must emerge from this broad dialogue.

REFERENCES

Aakko-Saksa, P. T., Lehtoranta, K., Kuittinen, N., Järvinen, A., Jalkanen, J. P., Johnson, K; Timonen, H. (2023). Reduction in greenhousegasandotheremissionsfromshipengines: Currenttrendsand future options. Progress in Energy andCombustion Science, 94, 101055. https://doi.org/10.1016/j.pecs.2022.101055

Adyasari, D.; Oehler, T.; Afiati, N., and Moosdorf, N. (2019). Environmental impact of nutrient fluxes associated with submarine ground water discharge at an urbanized tropical coast. Estuarine, Coastal and Shelf Science, 221, 30–38. https://doi.org/10.1016/j.ecss.2019.03.009

Alencar, E. (2021). Baía de Guanabara: descaso e resistência. Mórula Editorial.

Almeida, E., Diamantino, T. C., & de Sousa, O. (2007). Marine paints: the particular case ofantifoulingpaints. Progress in Organic Coatings, 59(1), 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017

Altug, G., Gurun, S., Cardak, M., Ciftci, P. S., Kalkan, S. (2012). The occurrenceofpathogenicbacteria in some ships' ballastwaterincomingfromvarious marine regionstothe Sea of Marmara, Turkey. Marine Environmental Research, 81, 35-42. https://doi.org/10.1016/j.marenvres.2012.08.005

Amador, E. D. S. (1997). Baía de Guanabara e ecossistemas periféricos: homem e natureza. Edição do Autor, Rio de Janeiro, 539.

Amador, E.S.E. (2012). Bacia da Baía de Guanabara: características geoambientais, formação e ecossistemas, Interciência, Rio de Janeiro.

Amara, I., Miled, W., Slama, R. B., &Ladhari, N. (2018). Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environmental toxicology and pharmacology, 57, 115-130. https://doi.org/10.1016/j.etap.2017.12.001

Andrades, R., Martins, A. S., Fardim, L. M., Ferreira, J. S., Santos, R. G. (2016). Originof marine debrisisrelatedtodisposable packs ofultra-processed food. Marine Pollution Bulletin, 109(1), 192-195. https://doi.org/10.1016/j.marpolbul.2016.05.083

Baptista Neto et al., & da Fonseca, E. M. (2011). Variação sazonal, espacial e composicional de lixo ao longo das praias da margem oriental da Baía de Guanabara (Rio de Janeiro) no período de 1999-2008. Revista de Gestão Costeira Integrada- JournalofIntegratedCoastal Zone Management, 11(1), 31-39.

Baptista Neto, J. A., Gaylarde, C., & da Fonseca, E. M. (2020). Microplastics: A pelagic habitat for microorganisms and invertebrates. Handbook of Microplastics in the Environment, 1-25. https://doi.org/10.1007/978-3-030-10618-8_17-1

Baptista Neto, J.A., Peixoto, T., Smith, B.J., Mcalister, J.J., Patchineelam, S.M., Patchineelam, S.R. & Fonseca, E.M. (2013). ‘Geochronologyand heavy metal flux to Guanabara Bay, Rio de Janeirostate: a preliminarystudy’, Anais da Academia Brasileira de Ciências, vol. 85, no. 4, pp. 1317-27, https://doi:10.1590/0001-3765201394612

Baptista Neto, J.A.; Crapez, M.; McAlister, J.J., and Vilela, C.G. (2005). Concentrationandbioavailabilityof heavy metals in sedimentsfromNiteróiharbour (Guanabara Bay/S.E. Brazil). Journal of Coastal Research, 21(4),811-817. https://doi.org/10.2112/012-NIS.1

Baptista Neto, J.A.B., Gingele, F.X., Leipe, T. &Brehme, I. (2006), ‘Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil’, Environmental Geology, vol. 49, no. 7, pp. 1051-63, https://DOI:10.1007/s00254- 005-0149-1

Bayazit, O., &Kaptan, M. (2022). Evaluation of the risk of pollution caused by ship operations through bow-tie-based fuzzy Bayesian network. Journal of Cleaner Production, 135386. https://doi.org/10.1016/j.jclepro.2022.135386

Benjamin, C; Figueiredo, N. The ship recycling market in Brazil – the Amazon potential. Journal of Environmental Management, [s. l.], v. 253, (2020). https://doi.org/10.1016/j.jenvman.2019.109540

Bernardino, D., & Franz, B. (2016). Lixo flutuante na Baía de Guanabara: passado, presente e perspectivas para o futuro. Desenvolvimento e Meio Ambiente, 38. https://dx.doi.org/10.5380/dma.v38i0.4724

Beyer, J., Song, Y., Tollefsen, K. E., Berge, J. A., Tveiten, L., Helland, A., . &Schøyen, (2022). The ecotoxicologyof marine tributyltin (TBT) hotspots: A review. Marine Environmental Research, 105689. https://doi.org/10.1016/j.marenvres.2022.105689

Birch, G. F., Lee, J. H., Tanner, E., Fortune, J., Munksgaard, N., Whitehead, J., . & Steinberg, P. (2020). Sediment metal enrichment and ecological risk assessment of ten ports and estuaries in the World Harbours Project. Marine Pollution Bulletin, 155, 111129. https://doi.org/10.1016/j.marpolbul.2020.111129

Briant, N., Freydier, R., Araújo, D. F., Delpoux, S., &Elbaz-Poulichet, F. (2022). Cu isotoperecordsof Cu-basedantifoulingpaints in sediment core profiles fromthelargestEuropean Marina, The PortCamargue._ Science of The Total Environment_, 849, 157885. https://doi.org/10.1016/j.scitotenv.2022.157885

Brinkmeyer, R. (2016). Diversityofbacteria in shipsballastwater as revealedbynextgeneration DNA sequencing. Marine Pollution Bulletin, 107(1), 277- 285. https://doi.org/10.1016/j.marpolbul.2016.03.058

Broeze, F. (Ed.). (2017). The Globalisation of the Oceans: Containerisation from the 1950s to the Present. Liverpool University Press.

Bull, A. S., & Love, M. S. (2019). Worldwide oil and gas platform decommissioning: a review of practices and reefing options. Ocean&coastal management, 168, 274- 306. https://doi.org/10.1016/j.ocecoaman.2018.10.024

Burkholder, J. M., Hallegraeff, G. M., Melia, G., Cohen, A., Bowers, H. A., Oldach, D. W.,

. &Mallin, M. A. (2007). Phytoplankton and bacterial assemblages in ballast water of US military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae, 6(4), 486-518. https://doi.org/10.1016/j.hal.2006.11.006

Carreira, R.S., Wagener, A.L. & Readman, J.W. (2004), ‘Sterols as markers of sewage contamination in a tropical urban estuary (Guanabara Bay, Brazil): space–time variations’, Estuarine, Coastal and Shelf Science, vol. 60, no. 4, pp. 587-98, https://doi.org/10.1016/j.ecss.2004.02.014

Connan, M., Perold, V., Dilley, B. J., Barbraud, C., Cherel, Y., & Ryan, P. G. (2021). The Indian Ocean ‘garbage patch’: Empiricalevidencefrom floating macro-litter. Marine Pollution Bulletin, 169, 112559. https://doi.org/10.1016/j.marpolbul.2021.112559

Cunha, D.L., Silva, S.M.C., Nascimento, M.T.L., Felix, L., Gomes, G., Bila, D.M. & Fonseca, E.M. (2020). ‘Occurrence of emerging contaminants and analysis of oestrogenic activity in the water and sediments from two coastal lagoons in southeastern Brazil’, Marine and Freshwater Research, vol. 72, no. 2, pp. 213-27. https://doi.org/10.1071/MF19391

da Silva P, L. J. L., de Almeida, C. N., de Carvalho; Dezotti, M. W., Corrêa, J. A. M., Faial,

K. D. C. F., &faiaL, K. R. F. (2014). Distribuição de metais pesados nos sedimentos de fundo dos rios Caceribu e Guaxindiba, afluentes da Baía de Guanabara–Rio de Janeiro, Brasil. Geochimica Brasiliensis, 28(2), 171-171. https://doi.org/10.5327/Z0102- 9800201400020006

da Silva, J. M. (2022). Saúde, Olhares e Saberes: Apontamentos para situações de desastres, acidentes e derramamento de petróleo. Pró-Reitoria de Extensão e Cultura/UFPE.

Dagola, P. H. C. B., Pinto, A. E. M., & Moreira, M. A. C. (2022). Empreendimentos na zona costeira brasileira: proteção legal e impactos ambientais. Revista Brasileira de Meio Ambiente, 10(2). https://doi.org/10.5281/zenodo.7321694

de Carvalho, D. G., & Neto, J. A. B. (2016). Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean&coastal management, 128, 10-17. https://doi.org/10.1016/j.ocecoaman.2016.04.009

Melo, C. (2020). Análise socioambiental da poluição por esgoto da Baía de Guanabara do Rio de Janeiro. Revista Valore, 5, 5022.DOI: https://doi.org/10.22408/reva502020345e- 5022

Demil, B., &Lecocq, X. (2006). The box: How the shipping container made the world smaller and the world economy bigger. M@n@gement, 9(2), 73-79. https://www.proquest.com/scholarly-journals/box-how-shipping-container-made-world-smaller/docview/1021054323/se-2

Deng, M., Peng, S., Xie, X., Jiang, Z., Hu, J., Qi, Z., & Sun, J. (2022). SO2

compliancemonitoringandemissioncharacteristicsanalysisofnavigatingships: A case studyof Shanghai waters in emissioncontrolareas, China. AtmosphericPollutionResearch, 13(11), 101560. https://doi.org/10.1016/j.apr.2022.101560

Dias, P.P.B.B.; Martins, M.V.A.; Clemente, I.M.M.M; Carelli, T.G.; Silva, F.S.; Fontana,

L.F.; Lorini, M.L.; Panigai, G.; Habib, R.; Mendonça-Filho, J.G., andLaut, L.L.M., (2017). Assesmentofthetrophicstateof Saquarema Lagoonal system, Rio de Janeiro (Brazil). Jornal of Sedimentary Environments, 2(1),49-64. https://doi.org/10.12957/jse.2017.28194

Dock, A., Linders, J., David, M., Gollasch, S., & David, J. (2019). Ishumanhealthsufficientlyprotectedfromchemicalsdischargedwithtreatedballastwaterfromv esselsworldwide?–A decadal perspective andrisk assessment. Chemosphere, 235, 194- 204. https://doi.org/10.1016/j.chemosphere.2019.06.101

Drake, L. A., Doblin, M. A., & Dobbs, F. C. (2007). Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine pollution bulletin, 55(7-9), 333- 341. https://doi.org/10.1016/j.marpolbul.2006.11.007

Duan, G., Fan, T., Chen, L., &Ma, J. (2021). Floating marine debrismitigation byvesselroutingmodeling andoptimizationconsideringcarbonemissionandtr avel time. Transportation Research Part C: Emerging Technologies, 133, 103449. https://doi.org/10.1016/j.trc.2021.103449

Duan, G., Nur, F., Alizadeh, M., Chen, L., Marufuzzaman, M., &Ma, J. (2020). Vesselroutingandoptimization for marine debriscollectionwithconsiderationofcarboncap. JournalofCleanerProduction, 263, 121399. https://doi.org/10.1016/j.jclepro.2020.121399

Duarte, C. M., & de Miranda, M. G. (2021). Poluição da baía de Guanabara: esgoto e sanitário e efluentes. Ciência e Natura, 43, 69. https://doi.org/10.5902/2179460X63649

Elidolu, G., Sezer, S. I., Akyuz, E., Arslan, O., &Arslanoglu, Y. (2023). Operationalrisk assessment ofballastingand de-ballasting on-board tankershipunder FMECA extendedEvidentialReasoning (ER) and Rule-basedBayesian Network (RBN) approach. ReliabilityEngineering& System Safety, 231, 108975. https://doi.org/10.1016/j.ress.2022.108975

Elk, A. G. H. P. V., D’Oliveira, P. M. S., Giordano, G., & Andrade, R. C. D. (2022). Potencial poluidor da disposição final de resíduos sólidos nas águas da bacia hidrográfica da Baía de Guanabara–RJ. Engenharia Sanitaria e Ambiental, 27, 195- 203. https://doi.org/10.1590/S1413-415220200319

Ellis, J. (2011). Analysis of accidents and incidents occurring during transport of packaged dangerous goods by sea. Safety science, 49(8-9), 1231-1237. https://doi.org/10.1016/j.ssci.2011.04.004

Eronat, A. H., Bengil, F., &Neşer, G. (2019). Shipping and ship recyclingrelated oil pollution detection in Çandarlı Bay (Turkey) using satellite monitoring. OceanEngineering, 187, 106157. https://doi.org/10.1016/j.oceaneng.2019.106157

Eronat, A. H., Bengil, F., &Neşer, G. (2019). Shipping and ship recycling related oil pollution detection in Çandarlı Bay (Turkey) using satellite monitoring. Ocean Engineering, 187, 106157. https://doi.org/10.1016/j.oceaneng.2019.106157

Euzebio, C. S., da Silveira Rangel, G., & Marques, R. C. (2019). Derramamento de petróleo e seus impactos no ambiente e na saúde humana. Brazilian Journal of Environmental Sciences (Online), (52), 79-98.Doi: https://doi.org/10.5327/Z2176- 947820190472

Feng, Q., An, C., Chen, Z., Yin, J., Zhang, B., Lee, K., & Wang, Z. (2022). Investigation into the impact of aged microplastics on oil behavior in shoreline environments. Journal of Hazardous Materials, 421, 126711. https://doi.org/10.1016/j.jhazmat.2021.126711

Ferreira, A. R. L., Cesar, R. G., de Siqueira, D. M., de Castro Rodrigues, A. P., Vezzone, M., Monte, C., . & Leite, S. G. F. (2020). Potencial tóxico de sedimentos dragados das Baías de Sepetiba e da Guanabara (RJ) em cenário de disposição em latossolo. Geosciences= Geociências, 39(04), 1141-1151. https://doi.org/10.5016/geociencias.v39i04.13965

Ferreira, M. D. S., Mársico, E. T., Conte Junior, C. A., Marques Júnior, A. N., Mano, S. B., & Clemente, S. C. D. S. (2013). Contaminação por metais traço em mexilhões Perna perna da costa brasileira. Ciência Rural, 43, 1012-1020. https://doi.org/10.1590/S0103- 84782013005000062

Fonseca, E.M., Baptista Neto, J.A., Silva, C.G., McAlister, J.J., Smith, B.J., Fernandez,

M.A. (2013). ‘Stormwaterimpact in Guanabara Bay (Rio de Janeiro): evidencesofseasonalvariability in thedynamicofthesediment heavy metals’, Estuarine, CoastalandShelf Science, vol. 130, pp. 161-8. https://doi.org/10.1016/j.ecss.2013.04.022 M.B. Fonseca, E.M; Baptista Neto, J.A.; Fernandez, M.A.; Mcalister, J., and Smith, B. (2011). Geochemical behavior of heavy metals in different environments in Rodrigo de Freitas Lagoon - RJ/Brazil. Anais da Academia Brasileira de Ciências, 83,457-469. https://doi.org/10.1590/S0001-37652011000200008

Frey, O. T., & De Vogelaere, A. (2014). The containerized shipping industry and the phenomenon of containers lost at sea.

Gan, L., Che, W., Zhou, M., Zhou, C., Zheng, Y., Zhang, L., . & Song, L. (2022). ShipexhaustemissionestimationandanalysisusingAutomaticIdentification System data: The westareaof Shenzhen port, China, as a case study. Ocean&Coastal Management, 226, 106245. https://doi.org/10.1016/j.ocecoaman.2022.106245

Gaylarde, Christine C; Baptista Neto, J. A; da Fonseca, E. M (2021). Paint fragments as polluting microplastics: A brief review. Marine Pollution Bulletin v. 162, p. 111847. https://doi.org/10.1016/j.marpolbul.2020.111847

Gorni, A. A. (2003). Introdução aos plásticos. Revistaplástico industrial, 10(09).

Harlaftis, G. (2020). Maritime history: A new version of the old Version and the true history of the sea. International Journal of Maritime History, 32(2), 383- 402. https://doi.org/10.1177/0843871420924243

Hauser-Davis, R. A., Silva-Junior, D. R., Linde-Arias, A. R., & Vianna, M. (2021). Cytosolic and metallothionein-bound hepatic metals and detoxification in a sentinel teleost, Dules auriga, from Southern Rio de Janeiro, Brazil. Biological Trace Element Research, 199(2), 744-752. https://doi.org/10.1007/s12011-020-02195-8

Hauser-Davis, R. A.; Silva-Junior, D. R.; Linde-Arias, A. R.; Vianna, M. (2019) Hepatic Metal and Metallothionein Levels in a Potential Sentinel Teleost, Dules auriga, from a Southeastern Brazilian Estuary. Bull. Environ. Contam. Toxicol. 103:538–543. https://doi.org/10.1007/s00128-019-02654-6.

He, S., Yu, D., Li, P., Zhang, M., Xing, S., Liu, B., . & Li, Z. H. (2022). A new perspective onendocrinedisruptingeffectsoftriphenyltinon marine medaka: Frombraintranscriptome, gutcontentmetabolomeandbehavior. Chemosphere, 307, 136190. https://doi.org/10.1016/j.chemosphere.2022.136190

Hinz, R., Mannetje, A. T., Glass, B., McLean, D., Pearce, N., & Douwes, J. (2020). Exposures to fumigants and residual chemicals in workers handling cargo from shipping containers and export logs in New Zealand. Annals of work exposures and health, 64(8), 826-837. https://doi.org/10.1093/annweh/wxaa052

Hlali A, Hammami S. (2019) The evolution of containerization and its impact on the Maghreb ports. Ann Mar Sci 3(1): 001-005. https://doi.org/10.17352/ams.000012

Horsman, P. V. (1982). The amountofgarbagepollutionfrommerchantships. Marine Pollution Bulletin, 13(5), 167-169. https://doi.org/10.1016/0025-326X(82)90088-1

IBGE - Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saneamento Básico (PNSB), Rio de Janeiro, Brasil. 2014.

Ifegwu OC, Anyakora C. (2015) Polycyclic Aromatic Hydrocarbons: Part I. Exposure. In: Advances in Clinical Chemistry. Elsevie p. 277-304. https://doi.org/10.1016/bs.acc.2015.08.001

Jitar, O., Teodosiu, C., Oros, A., Plavan, G., &Nicoara, M. (2015). Bioaccumulationof heavy metals in marine organismsfromtheRomanian sector ofthe Black Sea. New biotechnology, 32(3), 369-378. https://doi.org/10.1016/j.nbt.2014.11.004

Joshi, S., Wang, Y., Sparks, E., Marufuzzaman, M., Sartain, M., &Ma, J. (2023). Marine debrisawarenessimprovementusingimmersive virtual reality. Marine Pollution Bulletin, 186, 114406. https://doi.org/10.1016/j.marpolbul.2022.114406

Kamal, B., &Kutay, Ş. (2021). Assessment of causal mechanism of ship bunkering oil pollution. Ocean & Coastal Management, 215, 105939. https://doi.org/10.1016/j.ocecoaman.2021.105939

Karlsson, J., Ytreberg, E., &Eklund, B. (2010). Toxicityofanti-foulingpaints for use onshipsandleisureboatsto non-target organisms representingthreetrophiclevels. Environmental pollution, 158(3), 681-687. https://doi.org/10.1016/j.envpol.2009.10.024

Khadanga, M. K., Mishra, R. K., & Sahu, B. K. (2022). Assessment ofPollutionandEcological Risk Index of Heavy Metals in the Surface SedimentofEstuaryandtheCoastalEnvironmentofBayofBengal. Journalof Environmental Informatics, 39(1).

Kjerfve, B., Ribeiro, C. H., Dias, G. T., Filippo, A. M., & Quaresma, V. D. S. (1997). Oceanographiccharacteristicsofanimpactedcoastalbay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental shelfresearch, 17(13), 1609-1643. https://doi.org/10.1016/S0278-4343(97)00028-9

Kotrikla, A. M., Zavantias, A., &Kaloupi, M. (2021). Wastegenerationand management onboard a cruiseship: A case study. Ocean&Coastal Management, 212, 105850. https://doi.org/10.1016/j.ocecoaman.2021.105850

Koutsaftis, A; Aoyama I (2007) Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci. Total Environ, 387 (2007), pp. 166-174, https://doi.org/10.1016/j.scitotenv.2007.07.023

Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022). Ecologicalimpactsofballastwaterloadinganddischarge: insight intothetoxicityandaccumulationofdisinfectionby-products. Heliyon, e09107. https://doi.org/10.1016/j.heliyon 2022.e09107

Lakshmi, E., Priya, M., &Achari, V. S. (2021). An overview onthetreatmentofballastwater in ships. Ocean&Coastal Management, 199, 105296. https://doi.org/10.1016/j.ocecoaman.2020.105296

Lan, H., Ma, X., Ma, L., &Qiao, W. (2023). Pattern investigation of total loss maritime accidents based on association rule mining. Reliability Engineering & System Safety, 229, 108893. https://doi.org/10.1016/j.ress.2022.108893

Landquist, H., Hassellöv, I. M., Rosén, L., Lindgren, J. F., &Dahllöf, I. (2013). Evaluating the needs of risk assessment methods of potentially polluting shipwrecks. Journal of environmental management, 119, 85-92. https://doi.org/10.1016/j.jenvman.2012.12.036

Lee, J., Hong, S., Song, Y. K., Hong, S. H., Jang, Y. C., Jang, M., . & Shim, W. J. (2013). Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine pollution bulletin, 77(1-2), 349- 354. https://doi.org/10.1016/j.marpolbul.2013.08.013

Li, B., Liang, W., Liu, Q. X., Fu, S., Ma, C., Chen, Q., Shi, H. (2021).

Fishingestmicroplasticsunintentionally. Environmental Science & Technology, 55(15), 10471-10479. https://doi.org/10.1021/acs.est.1c01753

Lim, Y. C., Albarico, F. P. J. B., Chen, C. F., Chen, C. W., & Dong, C. D. (2022).

Pollutionsourcesandecologicalrisksofpotentiallytoxicmetals in sedimentsfrom a multi- functionalHsingdaHarbor in southwestern Taiwan. Regional Studies in Marine Science, 102780. https://doi.org/10.1016/j.rsma.2022.102780

Liu, J. L., Xu, X. R., Ding, Z. H., Peng, J. X., Jin, M. H., Wang, Y. S., Yue, W. Z. (2015). Heavy metals in wild marine fishfrom South China Sea: levels, tissue-andspecies- specificaccumulationandpotentialrisktohumans. Ecotoxicology, 24(7), 1583-1592.

Liu, K., Yu, Q., Yuan, Z., Yang, Z., & Shu, Y. (2021). A systematic analysis for maritime accidents causation in Chinese coastal waters using machinelearning approaches. Ocean & Coastal Management, 213, 105859. https://doi.org/10.1016/j.ocecoaman.2021.105859

Liu, X., Guo, M., Wang, Y., Yu, X., Guo, J., Tang, C., Li, B. (2016). Assessingpollution- relatedeffectsofoilspillsfromships in the Chinese Bohai Sea. Marine pollutionbulletin, 110(1), 194-202. https://doi.org/10.1016/j.marpolbul.2016.06.062

Lv, B., Jiang, T., Wei, H., Tian, W., Han, Y., Chen, L., . &Cui, Y. (2021). Transferofantibiotic-resistantbacteria via ballastwaterwith a specialfocusonmultipleantibiotic-resistantbacteria: A surveyfromaninlandport in theYangtze River. Marine Pollution Bulletin, 166, 112166. https://doi.org/10.1016/j.marpolbul.2021.112166

Lv, B., Zhu, G., Tian, W., Guo, C., Lu, X., Han, Y., . & Jiang, T. (2022). The prevalence of potential pathogens in ballast water and sediments of oceangoing vessels and implications for management. Environmental Research, 114990. https://doi.org/10.1016/j.envres.2022.114990

Marselou, O. S.; NikitakoS, N.; Papachristo, S, D. (2019). Environmental impacts of ship dismantling - the case of Aliaga in Turkey. Journal of Multidisciplinary Engineering Science and Technology, [s. l.], v. 6, n. 12, p. 11186–11193.

Melo, G.V., Baptista Neto, J.A., Malm, O., Fernandez, M.A. &Patchineelam, S.M. (2015). ‘Composition and behaviour of heavy metals in suspended sediments in a tropical estuarine system’, Environmental Earth Sciences, vol. 73, no. 3, pp. 133-44, DOI:10.1007/s12665-014-3491-3. https://doi.org/10.1007/s12665-014-3491-3

Mikac, N., Turk, M. F., Petrović, D., Bigović, M., &Krivokapić, S. (2022). First assessment ofbutyltins (BuTs) contaminationoftheMontenegrincoast (SoutheastAdriatic): Tributyltin (TBT) poses a threattothe marine ecosystem. Marine Pollution Bulletin, 185, 114270. https://doi.org/10.1016/j.marpolbul.2022.114270

Mohan, M. K., Prakash, T. B., &Mukherjee, A. (2022). AntifoulingpaintformulationswithZnOand Fe2O3 nano-paints for marine applications. SustainableChemistryandPharmacy, 30, 100858. https://doi.org/10.1016/j.scp.2022.100858

Morcillo, P., Esteban, M. Á., &Cuesta, A. (2016). Heavy metalsproducetoxicity, oxidative stress andapoptosis in the marine teleostfish SAF-1 cellline. Chemosphere, 144, 225- 233. https://doi.org/10.1016/j.chemosphere.2015.08.020

Naik, R. K., Chakraborty, P., D’Costa, P. M., Anilkumar, N., Mishra, R. K., & Fernandes,

V. (2021). A simpletechniquetomitigatemicroplasticpollutionand its mobility (via ballastwater) in the global ocean. Environmental Pollution, 283, 117070. https://doi.org/10.1016/j.envpol.2021.117070

Nascimento, M. T. L. D., Santos, A. D. D. O., Cunha, D. L. D., Felix, L. C., Gomes, G., Rangel, C. M. A., Baptista Neto, J. A. (2022). Endocrine disruptors, estrogenic activity by the YES bioassay, and acute toxicity in Southeastern Brazil metropolitan surface waters. https://doi.org/10.21715/GB2358-2812.202236005

Nascimento, M. T. L., de Oliveira Santos, A. D., da Cunha, D. L., Felix, L. C., Gomes, G., Hauser-Davis, R. A.,Baptista Neto, J. A. B. (2022). Estrogenic Activity and Endocrine Disruptor Compounds Determined in Guanabara Bay (Brazil) by Yeast Estrogen Screen Assays and Chemical Analyses. Anuário do Instituto de Geociências, 45. https://doi.org/10.11137/1982-3908_45_45450

Nascimento, M.T.L., Santos, A.D., Felix, L.C., Gomes, G., Sá, M.D.O., Cunha, D.L.,Bila,

D.M. (2018). ‘Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil’, Ecotoxicology and Environmental Safety, vol. 149, pp. 197- 202, https://doi.org/10.1016/j.ecoenv.2017.11.045

Ocampo, E. S., & Pereira, N. N. (2019). Can ship recycling be a sustainable activity practiced in Brazil? Journal of Cleaner Production, 224, 981-993. https://doi.org/10.1016/j.jclepro.2019.03.173

Pinto, A. F. S., Ramalho, J. C. M., Borghi, L., Carelli, T. G., Plantz, J. B., Pereira, E., Martins, M. V. A. (2019). Background concentrations of chemical elements in Sepetiba Bay (SE Brazil). Journal of Sedimentary Environments, 4(1), 108-123. https://doi.org/10.12957/jse.2019.40992

Pinto, F. N., Massone, C. G., Senez-Mello, T., Silva, F. S. D., &Crapez, M. A. C. (2022). Interferência da ocupação urbana na distribuição de poluentes orgânicos persistentes em manguezal. Engenharia Sanitaria e Ambiental, 27, 395-402. https://doi.org/10.1590/S1413-415220210116

Prabowo, A. R., & Bae, D. M. (2019). Environmental risk of maritimeterritory subjectedto accidental phenomena: Correlation ofoilspillandshipgrounding in the Exxon Valdez's case. Results in Engineering, 4, 100035. https://doi.org/10.1016/j.rineng.2019.100035

Qiong Wang, Fangping Cheng, Junzeng Xue, Nanyan Xiao, Huixian Wu, (2020). Bacterialcommunitycompositionanddiversity in theballastwaterof container shipsarrivingatYangshanPort, Shanghai, China. Marine PollutionBulletin,Volume 160, 2020, 111640. https://doi.org/10.1016/j.marpolbul.2020.111640.

Resende, L. L., de Almeida Pedrete, T., Nudi, A. H., &Wagener, A. D. L. R. (2016). Nível de contaminação por hidrocarbonetos na Baía de Guanabara, Rio de Janeiro-RJ. Revista Brasileira de Iniciação Científica, 4(1), 90-117.

Salgueiro-González, N., Campillo, J. A., Viñas, L., Beiras, R., López-Mahía, P., &Muniategui-Lorenzo, S. (2019). Occurrenceofselectedendocrinedisruptingcompounds in Iberiancoastalareasand assessment oftheenvironmentalrisk. Environmental Pollution, 249, 767-775. https://doi.org/10.1016/j.envpol.2019.03.107

Salleh, N. A., Rosli, F. N., Akbar, M. A., Yusof, A., Sahrani, F. K., Razak, S. A., Bunawan,

H. (2021). Pathogenichitchhikerdiversityoninternationalships' ballastwaterat West Malaysia port. Marine pollutionbulletin, 172, 112850. https://doi.org/10.1016/j.marpolbul.2021.112850

Sanches Filho, P.J., Andrade, G.O., Moreira, K. et al. Determination of aliphatic hydrocarbons in surface sediments of Mangueira Lagoon (RS—Brazil). Environ Earth Sci 80, 728 (2021). https://doi.org/10.1007/s12665-021-10010-3

Santos, A. D. O, do Nascimento, M. T. L., Sanson, A. L., Dos Santos, R. F., Felix, L. C., de Freitas, A. D. S.,Bila, D. M. (2022). Pharmaceuticals, natural and synthetic hormones and phenols in sediments from an eutrophic estuary, Jurujuba Sound, Guanabara Bay, Brazil. Marine Pollution Bulletin, 184, 114176. https://doi.org/10.1016/j.marpolbul.2022.114176

Shiu, R. F., Gong, G. C., Fang, M. D., Chow, C. H., & Chin, W. C. (2021). Marine microplastics in the surface watersof “pristine” Kuroshio. Marine Pollution Bulletin, 172, 112808. https://doi.org/10.1016/j.marpolbul.2021.112808

Silva, A. C. P. D., Spata, A. D. O., & Lima, M. D. S. C. (2018). Gestão ambiental integrada na Região Metropolitana do Rio de Janeiro: a avaliação de impactos cumulativos e sinérgicos entre cidades milionárias–o exemplo da baia de Sepetiba (RJ). Confins. Revue franco-brésilienne de géographie/Revista franco-brasilera de geografia, (38). https://doi.org/10.4000/confins.16960

Silva, D. C. P., Melo, C. dos S., Oliveira, A. B. de, Santos, N. M. M. dos, & Pinto, L. C. (2022). Derramamento de óleo no mar e implicações tóxicas da exposição aos compostos químicos do petróleo: oil spill in the sea and toxic implications of exposure to petroleum chemical. Revista Contexto & Saúde, 21(44), 332–344. https://doi.org/10.21527/2176-7114.2021.44.11470

Silva, M.C.; Kirinus, E.P.; Bendô, A.R.R.; Marques, W.C.; Vargas, M.M.; Leite, L.R.; Moller Junior, O., andPertille, J. (2021). Dynamic modelingofeffluentdispersiononMangueira bay — Patos Lagoon (Brazil). Regional Studies in Marine Science, 41,101544. https://doi.org/10.1016/j.rsma.2020.101544

Simcock, A. (2018). Shipping. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_6

Soares-Gomes, A., Da Gama, B.A.P., Baptista Neto, J.A., Freire, D.G., Cordeiro, R.C., Machado, W. & Pereira, R.C. (2016). ‘Anenvironmental overview of Guanabara Bay, Rio de Janeiro’, Regional Studies in Marine Science, vol. 8, no. 2, pp. 319-30, https://doi.org/10.1016/j.rsma.2016.01.009

Sun, Q., Liang, B., Cai, M., Zhang, Y., Ou, H., Ni, X., Zhao, J. (2023). Cruise observationofthe marine atmosphereandshipemissions in South China Sea: Aerosolcomposition, sources, andtheagingprocess. Environmental Pollution, 316, 120539. https://doi.org/10.1016/j.envpol.2022.120539

Taylor, J. R., DeVogelaere, A. P., Burton, E. J., Frey, O., Lundsten, L., Kuhnz, L. A., . & Barry, J. P. (2014). Deep-sea faunal communities associated with a lost intermodal shipping container in the Monterey Bay National Marine Sanctuary, CA. Marine pollutionbulletin, 83(1), 92-106. https://doi.org/10.1016/j.marpolbul.2014.04.014

Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M., &Boero, F. (2001). Environmental impact of antifouling technologies: state of the art and perspectives. Aquatic Conservation: Marine and Freshwater Ecosystems, 11(4), 311-317., 10.1002/aqc.459

Tolian, R., Makhsoosi, A. H., &Bushehri, P. K. (2020). Investigationof heavy metals in theballastwaterofshiptanksafterandbeforetheimplementationoftheballastwaterconvention: BushehrPort, Persian Gulf. Marine Pollution Bulletin, 157, 111378. https://doi.org/10.1016/j.marpolbul.2020.111378

Toscano, D., Murena, F., Quaranta, F., &Mocerino, L. (2022). Impactofshipemissionsat a high receptor point in theportofNaples. AtmosphericEnvironment, 286, 119253. https://doi.org/10.1016/j.atmosenv.2022.119253

Uçak, Ş. Ş. (2022). Impact analysis on the oil pollution response services of the European Maritime Safety Agency during the Covid-19 pandemic (2006–2020). Marine Pollution Bulletin, 174, 113220.

Vacholz, H. G. C., Martins, H. F. M., &Bernardineli, M. C. (2022). Desequilíbrio ecológico decorrente da introdução de espécies exóticas pela descarga da água de lastro de navios e a responsabilização civil. Revista do Curso de Direito, 17(17), 19-40. https://doi.org/10.15603/2176-1094/rcd.v17n17p19-40

Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C. R. (2015). Microplastics in sediments: a review oftechniques, occurrenceandeffects. Marine environmentalresearch, 111, 5-17. https://doi.org/10.1016/j.marenvres.2015.06.007

Viganò, L., Benfenati, E., Van Cauwenberge, A., Eidem, J.K., Erratico, C., Goksøyr, A. &Urbatzka, R. (2008). ‘Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assays’, Chemosphere, vol. 73, no. 7, pp. 1078-89, https://doi.org/10.1016/j.chemosphere.2008.07.057

Wan, S., Yang, X., Chen, X., Qu, Z., An, C., Zhang, B., Bi, H. (2022). Emerging marine pollution from container ship accidents: Risk characteristics, response strategies, and regulation advancements. Journal of Cleaner Production, 134266. https://doi.org/10.1016/j.jclepro.2022.134266

Wan, S., Yang, X., Chen, X., Qu, Z., An, C., Zhang, B., . & Bi, H. (2022). Emerging marine pollution from container ship accidents: Risk characteristics, response strategies, and regulation advancements. Journal of Cleaner Production, 134266. https://doi.org/10.1016/j.jclepro.2022.134266

Wang, K., Wang, J., Huang, L., Yuan, Y., Wu, G., Xing, H., . & Jiang, X. (2022). A comprehensive review onthepredictionofshipenergyconsumptionand pollutiongas emissions. OceanEngineering, 266, 112826. https://doi.org/10.1016/j.oceaneng.2022.112826

Wang, Z., An, C., Chen, X., Lee, K., Zhang, B., & Feng, Q. (2021). Disposablemasks release microplasticstotheaqueousenvironmentwithexacerbationby natural weathering. Journalofhazardousmaterials, 417, 126036. https://doi.org/10.1016/j.jhazmat.2021.126036

Wu, H., Chen, C., Wang, Q., Lin, J., & Xue, J. (2017). The biologicalcontentofballastwater in China: A review. AquacultureandFisheries, 2(6), 241-246. https://doi.org/10.1016/j.aaf.2017.03.002

Xing, W., Zhu, L. (2022). AssessingtheimpactsofSanchiincidenton Chinese lawconcerningship-sourceoilpollution. Ocean&Coastal Management, 225, 106227. https://doi.org/10.1016/j.ocecoaman.2022.106227

Yang, L., Zhang, Q., Lv, Z., Zhang, Y., Yang, Z., Fu, F., . & Mao, H. (2022). Efficiencyof DECA onshipemissionandurbanairquality: A case studyof China port. JournalofCleanerProduction, 132556. https://doi.org/10.1016/j.jclepro.2022.132556

Yang, M., Chen, B., Xin, X., Song, X., Liu, J., Dong, G., . & Zhang, B. (2021). Interactionsbetweenmicroplasticsandoildispersion in the marine environment. JournalofHazardousMaterials, 403, 123944. https://doi.org/10.1016/j.jhazmat.2020.123944

Yang, M., Wang, Q., Chen, J., & Wu, H. (2022). The occurrenceofpotentialpathogenicbacteriaoninternationalships' ballastwaterat YangshanPort, Shanghai, China. Marine Pollution Bulletin, 184, 114190. https://doi.org/10.1016/j.marpolbul.2022.114190

Ye, J., Chen, J., Shi, J., Jie, Z., & Hu, D. (2022). Game analysisofshipballastwaterdischarge management—triggeredbyradioactivewater release fromJapan. Ocean&Coastal Management, 228, 106303. https://doi.org/10.1016/j.ocecoaman.2022.106303

Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in organic coatings, 50(2), 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001

Yılmaz, A. B., Yanar, A., & Alkan, E. N. (2017). Review of heavy metal accumulationonaquaticenvironment in Northern East Mediterrenean Sea part I: some essentialmetals. Reviews on Environmental Health, 32(1-2), 119-163. https://doi.org/10.1515/reveh-2016-0065

Yin, J., Huang, G., Li, M., &An, C. (2021). Will thechemicalcontaminants in agriculturalsoilaffecttheecotoxicityofmicroplastics? ACS Agricultural Science & Technology, 1(1), 3-4. https://doi.org/10.1021/acsagscitech.0c00005

Ytreberg, E., Åström, S., &Fridell, E. (2021). Valuatingenvironmentalimpactsfromshipemissions–The marine perspective. Journalof Environmental Management, 282, 111958. https://doi.org/10.1016/j.jenvman.2021.111958

Ytreberg, E., Hansson, K., Hermansson, A. L., Parsmo, R., Lagerström, M., Jalkanen, J. P., &Hassellöv, I. M. (2022). Metal and PAH loadsfromshipsandboats, relativeothersources, in theBaltic Sea. Marine Pollution Bulletin, 182, 113904. https://doi.org/10.1016/j.marpolbul.2022.113904

Ytreberg, E., Lagerström, M., Nöu, S., &Wiklund, A. K. E. (2021). Environmental risk assessment ofusingantifoulingpaintsonpleasurecrafts in European Union waters. Journal of Environmental Management, 281, 111846. https://doi.org/10.1016/j.jenvman.2020.111846

Zhang, S., Chen, J., Wan, Z., Yu, M., Shu, Y., Tan, Z., & Liu, J. (2021). Challengesandcountermeasures for internationalshipwaste management: IMO, China, United States, and EU. Ocean&Coastal Management, 213, 105836. https://doi.org/10.1016/j.ocecoaman.2021.105836

Zhou, F. (Ed.). (2014). Antifouling Surfaces and Materials: from land to marine environment. Springer.


Received: December 20, 2022

Approved: April 17, 2023

DOI: 10.20985/1980-5160.2023.v18n1.1848

How to cite: Nascimento, M., Santos, A.D.O., Freitas, A.S., Santos, R.F., Hauser-Davis, R.A., Fonseca, E.M., Baptista Neto, J.A. (2023). Abandoned vessels in Guanabara Bay and their environmental implications. Revista S&G 18, 1. https://revistasg.emnuvens.com.br/sg/article/view/1848