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ABSTRACT

Many types of physical models have been developed for runoff  es� ma� on with successful 
results. However, accurate runoff  es� ma� on remains a challenging problem owing to the 
lack of fi eld data and the complexity of its hydrological process. In this paper, a machine 
learning method for runoff  es� ma� on is presented as an alterna� ve approach to the phy-
sical model. Various types of input variables and Ar� fi cial Neural Network (ANN) archi-
tectures were examined in this study. Results showed that a two-layer network with the 
tansig ac� va� on func� on and the Levenberg–Marquardt learning algorithm had the best 
performance. For this architecture, the most eff ec� ve input vector consists of a catch-
ment perimeter, canal length, slope, runoff  coeffi  cient, and rainfall intensity. However, 
results of mul� variate analysis of variance indicated the signifi cant interac� on eff ect of 
input data and the ANN architecture. Thus, to create a suitable ANN model for runoff  
es� ma� on, a systema� c determina� on of the input vector is necessary. 

Keywords: Urban catchment, runoff  es� ma� on, ar� fi cial neural network, machine lear-
ning
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1. INTRODUCTION

Storm water and runoff management are common is-
sues in most urban catchments (Whitford et al., 2001; 
Zhang et al., 2012; Kumar et al., 2013). The hydrological 
process in urban catchments is complicated (Freni et al., 
2009) and involves a complex network of impervious and 
vegetative surfaces, canals, sewerages, pipelines, etc. 
(Whitford et al., 2001; Zhang et al., 2012; Kumar et al., 
2013). Most urban catchments are ineffective for hydro-
metric measuring instruments. 

The fundamental part of all storm-water runoff ma-
nagement models is the accurate estimation of surface 
runoff (Chen; Adams, 2007). Runoff forecasting is essen-
tial for planning, designing, and operation of water re-
source projects (Reddy et al., 2008). During the past few 
decades, runoff estimation has greatly benefitted from 
conceptual modeling, which retains some of the physical 
laws in its mathematical formulations. However, these 
models rely on a large amount of input data (Elshorbagy 
et al., 2000). Therefore, producing output from them is 
costly (Elshorbagy et al., 2000), and a high uncertainty 
exists in the results (Freni et al., 2009).

In cases of limited data and process complexity, using 
machine learning techniques is a suitable approach 
(Chae et al., 2016). The artificial neural network (ANN) 
is a subgroup of machine learning that has received sig-
nificant attention in the context of estimation problems 
(Khayatian; Sarto, 2016). Over the past few decades, 
ANN models have become very widely used in the fields 
of hydrology, water resources, and watershed manage-
ment (Chavoshi et al., 2013; Orimi et al., 2015). 

Elshorbagy et al. (2000), for example, studied the 
applicability and usefulness of ANN models in runoff 
prediction. By developing various ANN-based models in 
the Red River Valley, Canada and comparing them with 
traditional techniques, they concluded that ANN-based 
models yield better results and have better prediction 
ability. Similarly, Ahmad and Simonovic (2001) used a 
feed-forward ANN with a back-propagation algorithm for 
predicting the peak flow, timing, and shape of a runoff 
hydrograph in the Red River in Manitoba, Canada.

To analyze the performance of ANN models for fore-
casting short-term daily flow, Pulido-Calvo and Portela 
(2007) applied a feed-forward neural network in large 
Portuguese watersheds. They claimed ANN models can 
predict watershed flow using insufficient data. Reddy et 
al. (2008) modeled the rainfall-runoff process using em-
pirical models and compared it with ANNs. They used 
the data on the Godavari Basin of India and explored the 
ANN performance improvement by combining it with 

empirical methods. Lee et al. (2010) built two types of 
ANN models for the prediction of the regional runoff uti-
lization and compared their reliabilities. A network with 
a radial base function using the Gaussian function sho-
wed better stability than a neural network model using 
back-propagation. 

Chiang et al. (2004) studied the stability and effective-
ness of two ANN types: static feed-forward and dynamic 
feed-forward. They applied various ANN architectures to 
the Lan-Yang River, Taiwan, and showed that both static 
and dynamic neural networks yielded reasonable results. 
However, the static feed-forward type showed better 
performance than the dynamic feed-forward type if the 
data were sufficient. In the case of insufficient training 
data, the dynamic feed-forward ANN demonstrated signi-
ficantly better performance. Meanwhile, Chavoshi et al. 
(2013) applied ANN for flood estimation in the southern 
strip of the Caspian Sea watershed. They compared their 
results with a multiple regression model and showed the 
ANN model to be a powerful tool for resolving the hydro-
logical problem complexity. Among the different types 
of ANN architectures, multilayer feed-forward back pro-
pagation with the Levenberg–Marquardt resulted in the 
best performance.

A broad review of the literature on the water resour-
ce management and hydrology indicates the following 
points: (1) several studies were conducted to investigate 
the applicability of ANNs to forecast runoff in different 
watersheds and to compare them with traditional physi-
cal models. Most of these studies showed the acceptable 
performance of ANN models, particularly at watersheds 
with insufficient data; (2) in addition, exploring the ANN 
architecture with the best performance has been the fo-
cus of researchers. Accordingly, various ANN structures 
were designed and tested through changing neural net-
work components, including several neurons and layers, 
transforming functions, learning methods, and network 
types. Although a feed-forward perceptron network was 
recommended by many researchers, there is no consen-
sus on network structure; (3) few works have focused 
on studying the effect of the input vector on ANN mo-
del performance for runoff estimation; (4) moreover, few 
studies have focused on the application of ANNs in urban 
watersheds. Particularly, due to the complexity of the 
hydrological process in urban catchments and the lack of 
field data (Bertrand-Krajewski 2007), this research area 
requires more attention. 

The aim of this study is thus to determine the ANN 
architectures that result in the most accurate performan-
ce for urban catchment estimation. To this end, a total 
of 24 ANN models were proposed and tested. The per-
formances of the proposed models were systematically 
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compared. In addition, this study served to explore the 
interaction effect of input vectors on ANN architecture. 

ARTIFICIAL NEURAL NETWORK 

An ANN is an information-processing system that sha-
res certain performance characteristics with biological 
neural networks (Fausett, 1994). An ANN consists of a 
large number of interconnected computational nodes, 
called neurons, working together (Sethi et al., 2010). 
Generally, a neural network consists of three layers: 
input, middle (hidden), and output layers, which are fully 
connected. The input layer represents entries; and the 
output layer represents the corresponding values. In 
the middle layers, there exist several artificial neurons 
comprised of the activation function (weights and bia-
ses to calculate output values), as well as the transfer 
function for propagating values to subsequent layers. An 
important characteristic of the ANN is its ability to learn. 
Learning is the process by which a neural system acqui-
res the ability to carry out certain tasks by adjusting its 
internal parameters according to some learning scheme 
(Karayiannis; Venetsanopoulos, 2013).

A neural network is characterized by its architecture, 
which represents the pattern of connections among neu-
rons, its method of determining the connection weights, 
and the activation function (Fausett, 1994). A typical ANN 
is the multilayer perceptron (MLP). In MLP, the direction 
of information flow is feed-forward (where the informa-
tion flows from the input nodes to output nodes). The 
learning process is supervised with the back-propagation 
algorithm. Many studies have shown the ability of MLP 
to solve complex and diverse problems (Haykin et al., 
2009).

In addition to the configuration of layers and the trai-
ning algorithm, the number of neurons in the middle la-
yer is significant to ANN performance. An ANN with too 
few neurons in the middle layer is not capable of making 
an accurate output, while an ANN with too many neurons 
in the middle layer is over-fitted and has poor predictive 
performance (Chae et al., 2016). To determine the num-
ber of hidden layers and neurons, either trial-and-error 
or intelligent methods can be used (Najafi-Marghmaleki 
et al., 2016).

STUDY AREA

The area selected for this study is located in the south-
west of Isfahan, Iran, encompassing 69 km2. It is located 
in a low rainfall zone, with the average annual precipita-
tion of 127.2 mm over the past two decades. To the north 

and northeast lies the Zayanderood River. To the west, 
it is surrounded by a residential district. To the east and 
southwest is an area of elevated terrain. It is located bet-
ween 51˚39’ and 51◦43’ E longitude and 32◦35’ to 32◦38’ 
N latitude (Figure 1). The study area is characterized by 
a diverse topography with an overall slope of 2.5%. The 
land slope in the northern direction is steep toward the 
Zayanderood River; the slope in the western direction 
is moderate. Runoff canals flowing through urban areas 
lead to the Zayanderood River.

Figure 1. Area study

The study area was divided into two parts: urban and 
suburban watersheds. The suburban catchment consis-
ted of six sub-watersheds (CO-1 through CO-6); the ur-
ban catchment included 35 sub-watersheds (CI-1 through 
CI-35). Since the runoff in CO-6 flowed out of the study 
area, this sub-watershed was omitted. For each sub-wa-
tershed in the urban catchment, the physiographic pa-
rameters (area, perimeter, canal length, and slope) and 
time of concentrations were calculated. The runoff coef-
ficient for different land was obtained from American So-
ciety of Civil Engineering (ASCE). The rainfall-runoff data 
from 2000 to 2016 were used for model development. 

2. METHODOLOGY

The methodology adopted in this study consisted of 
two phases. Phase 1 was dedicated to model selection 
and input vector analysis. In this phase, through changing 
network components, including the number of neurons, 
transforming functions, learning methods, and hidden 
layers, various ANN models of artificial neural networks 
were developed and evaluated. The interaction effect of 
the input vector on the ANN structure was analyzed by 
using multivariate analysis of variance (MANOVA) tech-
niques. The data set for MANOVA was generated by a 
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cross-validation procedure. The second phase involved 
the applicability of ANN models for runoff estimation. 
For this purpose, the ANN model outputs were compared 
with the results of the Storm Water Management Model 
(SWMM). By implementing MANOVA, the significant dif-
ferences between these models were studied. A detailed 
description of the methodology is illustrated in Figure 2. 

Figure 2. Model selection and input vector analysis

ANN architecture selection

A multilayer perceptron (MLP) artificial neural net-
work with a back propagation algorithm was used to 
estimate the runoff in the urban watersheds. MLP is a 
prominent ANN architecture that is used in many water 
resource and hydrological applications (Braddock et al., 
1998; Wang et al., 2008). 

In many nonlinear problems, the use of a single hid-
den layer is sufficient (Funahashi, 1989;Hornik et al., 

1989; Sreekanth et al., 2011). Furthermore, studies 
have shown that using more than two hidden layers may 
not produce considerable improvement (Patuwo et al., 
1993). In this study, the authors examined both a one-
-layer and two-layer networks. To determine the number 
of neurons in the hidden layers, the authors applied the 
following rules: (1) the number of neurons in the first 
layer should not be exceeded by three times the number 
of input variables; and (2) the number of neurons in the 
second hidden layer should be limited to two times the 
number of neurons in the first layer.

The linear activation function and logistic sigmoid 
function are the most widely used functions in the out-
put layer and hidden layer, respectively (Sivakumar et al., 
2002). A study by Yonaba et al. (2010) showed that the 
tangent sigmoid is the most pertinent transfer function 
for stream-flow forecasting. They found that a nonlinear 
transfer function in the output layer failed to improve 
performance value. To obtain the best ANN architecture, 
both the logistic sigmoid function and tangent sigmoid 
are considered in this study.

Learning method selection 

Various ANN learning algorithms exist, such as the 
scaled conjugate gradient (SCG), Levenberg–Marquardt 
(LM), and resilient back-propagation (Ruck et al., 1990). 
Based on performance statistics for back-propagation al-
gorithms, the LM is the best (Affandi; Watanabe, 2008). 
In this research, the authors used both LM and the Ba-
yesian regularization (BR) algorithm in the training pro-
cedure.

Input vector selection 

In contrast to statistical methods, ANNs are categori-
zed into various data-driven approaches (Chakraborty et 
al., 1992). Therefore, selecting a set of appropriate input 
vectors is a critical step in the process of ANN model de-
velopment (Zealand et al., 1999; Dogan et al., 2008). The 
input vector must be uncorrelated, free of noise, and 
have a significant relationship with the output vector. 
Data-driven approaches can usually determine the cri-
tical input vector; nonetheless, this approach is not ef-
ficient (Bowden et al., 2005). By increasing the number 
of variables, the result will be computational complexity, 
learning process difficulty, low accuracy, and poor per-
formance (Back; Trappenberg, 1999; Maier; Dandy, 2000; 
Bowden et al., 2005).

Despite the importance of input vector determination 
on ANN performance, Maier and Dandy (2000) claimed 
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that, in most water-resource ANN applications, minimal 
attention is given to the task of selecting appropriate 
model input. In this study, the authors employed a com-
bination of input determination methods, including the 
“prior knowledge” method (Bowden, et al., 2005) and 
the “saliency analysis” method (Abrahart et al. 2001) to 
select the appropriate input vector. 

According to these approaches, two vectors of hydro-
logical variables are defined. With vector 1, the input 
variables consist of the catchment area, concentration 
time, rainfall intensity, and runoff coefficient. As in the 
hydrological watershed, the variable time of concentra-
tion can be estimated by experimental approaches. Thus, 
with the second input vector, the concentration time 
was substituted by affecting the variables consisting of 
the catchment perimeter, channel length, slope, runoff 
coefficient, and rainfall intensity. Accordingly, the rela-
tionships among these variables were explored and the 
urban runoff value was estimated.

Data preparation

Since the acceptable data range for the sigmoid ac-
tivation function is mostly in the range of −1 to 1, the 
normalization must be performed to place input data in 
the range of −1 to 1 before applying the data to ANN. For 
normalization, the following equations are used:

(1)

where x is the original data for each input variable,  
and  are respectively the minimum and maximum values 
of X, and  is the normalized value. For operating an ANN, 
it is usually required to divide the dataset into three sub-
sets for the purpose of training, validation, and testing. 
Training handles the weight values of the network. Du-
ring the training phase, approximately 75% of the whole 
dataset is frequently fed to the network until the accep-
table weight values are determined. The purpose of vali-
dation is to ensure the proper training and to avoid over-
-fitting or over-training. A total of 12.5% of the dataset 
was chosen for validation. For the final evaluation of the 
ANN performance, the remaining 12.5% of the dataset 
was used. 

Evaluation criteria

To assess ANN performance during training, valida-
tion, and testing, two evaluation measures were applied. 

A mean squared error (MSE) is one of the most com-
monly used performance measures in hydrological mo-
deling (Elshorbagy et al., 2000). The other index used to 
evaluate the correlation between observed and predic-
ted runoff was the coefficient of determination, . The 
formulas for MSE and  are as follows:

(2)

(3)

(4)

where Yi denotes the observed (actual) value of runoff,  
is the estimated value, and  the number of observations.

3. RESULTS AND DISCUSSION

To determine the appropriate ANN configuration for 
obtaining satisfactory results, various ANN models with 
two input vectors were investigated. Each model was de-
veloped by using different network model parameters, 
such as learning algorithms (LM, BR), activation func-
tions (logsig, radbas, tansig), numbers of hidden layers 
(one and two), and four to nine neurons in the hidden 
layers. These models were trained 84 times and the best 
performances were documented. 

Results for input vector 1 

Table 1 illustrates the values of statistical indicators 
for a total of six ANN models with input vector 1 during 
training and testing periods. As mentioned earlier, input 
vector 1 consists of variables, including catchment area, 
concentration time, rainfall intensity, and runoff coef-
ficient. The differences between the models related to 
the number of neurons, the activation function form, 
and training method. The results from the model perfor-
mances indicated that the single-layer network with five 
neurons—when the activation function was radbas, and 
the training algorithm was LM—had the best performan-
ce. This network resulted in an R2 of 0.853 for the testing 
dataset; a mean squared error (MSE) of 0.96 m6 for the 
testing dataset, and 0.6 m6 for the training dataset, res-
pectively.
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To investigate the influence of the hidden layer on net-
work performance, other combinations of ANN models 
with input vector 1 were developed. In these models, 
the number of layers was increased by two, and different 
network parameters, including the number of neurons, 
activation function forms, and training algorithms were 
examined. For input vector 1, the results from the model 
performance (Table 2) indicated that, when the number 
of hidden layers increased by two, a network consisting 
of five and eight neurons with logsig and tansig activa-
tion functions, respectively, performed successfully. In 
this combination, the best training algorithm was LM. 
This network resulted in an R2 of 0.957 for the testing 
dataset, an MSE of 0.53 m6 for the testing dataset, and 
0.43 m6 for the training dataset.

With input vector 1, a comparison of the statistical in-
dicators displayed better performance for the network 
with two hidden layers. This model returned an MSE of 
2.41 m6, while the network with a single layer returned 
an MSE of 4.96 m6. Moreover, in terms of the coefficient 
of determination, the network with two hidden layers 
demonstrated better performance. It was observed that 
the network with a single hidden layer returned 0.432, 
while the network with two hidden layers returned 0.704. 

Results for input vector 2

Table 3 illustrates the values of statistical indicators 
for a total of six ANN models with input vector 2 during 
training and testing periods. As mentioned earlier, input 
vector 2 consisted of the variables of the catchment peri-
meter, channel length, slope, runoff coefficient, and rain-
fall intensity. Results of the model performance indicated 
that a single-layer network with seven neurons—when 
the activation function was logic and the training algo-
rithm was LM—had the best performance. This network 
resulted in an R2 of 0.886 for the testing dataset, an MSE 
of 0.69 m6 for the testing dataset, and 0.11 m6 for the 
training dataset, respectively.

To investigate the influence of the hidden layer on net-
work performance, other combinations of ANN models 
with input vector 2 were developed. In these models, 
the number of layers was increased by two, and different 
network parameters, including the number of neurons, 
activation function forms, and training algorithms were 
examined. For input vector 2, the model performance 
results (Table 4) indicated that, when the number of hid-
den layers increased by two, the performances of the 
first three ANN architectures were very similar. However, 

Table 1. Performances of diff erent ar� fi cial neural network models with a one-layer network and input vector 1

Acti vati on 
functi on

No. of 
Neurons

Training 
Method

Validati on Training Testi ng

MSE MSE MSE R2 SSE

Logsig 6 LM 1,21 0,9 1,63 0,537 255,9

Radbas 5 LM 1,32 0,6 0,96 0,853 150,7

Tansig 7 LM 1,16 1,1 1,65 0,668 259,1

Logsig 7 BR 4,48 3,95 7,53 0,257 1182

Radbas 7 BR 1,77 1,66 1,76 0,255 276,3

Tansig 4 BR 4,29 3,52 16,23 0,025 2548

Table 2. Performances of diff erent ar� fi cial neural network models with a two-layer network and input vector 1

Acti vati on 
functi on
Layer 1

Acti vati on 
functi on
Layer 2

No. of 
Neurons
Layer 1

No. of 
Neurons
Layer2

Training 
Method

Validati on Training Testi ng

MSE MSE MSE R2 SSE1

tansig logsig 5 8 LM 0,56 0,43 0,53 0,957 83,21

tansig radbas 7 8 LM 0,63 0,41 1,01 0,806 158,6

tansig tansig 7 10 LM 0,29 0,28 0,71 0,918 111,5

tansig logsig 7 9 RB 2,47 1,92 8,81 0,552 1383

tansig radbas 7 10 RB 1,34 1,18 1,86 0,442 292

tansig tansig 6 6 RB 2,03 1,58 1,59 0,547 249,6
1residual sum of squares



S&G Journal
Volume 15, Number 2, 2020, pp. 170-180
DOI: 10.20985/1980-5160.2020.v15n2.1657

176

among the six ANN models, as outlined in Table 4, the 
network consisting of eight and nine neurons with tansig 
activation functions in both layers performed in the best 
way. In this architecture, the best training algorithm was 
LM. This network resulted in an R2 of 0.987 for the testing 
dataset, an MSE of 0.05 m6 for the testing dataset, and 
0.002 m6 for the training dataset, respectively.

As outlined in Table 5, a comparison of the proposed 
network performances indicates the following: (1) input 
vector 2 provides better performance for runoff estima-
tion of urban watersheds; (2) increasing the number of 
hidden layers is often helpful for improving the runoff 
estimation in an urban catchment; (3) two hidden layers 
with eight and nine neurons and the tansig activation 
function in both layers display the best performance. The 
Mean Square Error (MSE), Error Sum of Squares (SSE), 
and R2 observed for this network architecture are 0.05 
m6, 0.314 m6, and 0.987, respectively.

Input vector interaction effect on ANN architecture

To determine whether the input vector and ANN archi-
tecture (e.g. learning algorithm, transfer function) have 

a significant effect on network performance, a two-way 
MANOVA was used. An experiment was thus conducted 
in which input vector 1 and input vector 2 were exposed 
to a combination of learning methods and transfer func-
tions. The performance data were generated using ten-
-fold cross-validation. The dataset was randomly divided 
into ten parts. Each part was held out in turn, and the 
network was trained on the remaining nine-tenths. Then, 
its performance indexes (MSE and R2) were calculated on 
the holdout set. The network was executed a total of ten 
times on different training sets. Finally the ten perfor-
mance indexes were averaged to yield a performance es-
timate. A two-way MANOVA was carried out by SPSS for 
a one-layer and two-layer ANN. The overall conclusions 
are outlined below.

In both networks (one-layer ANN and two-layer ANN), 
the multivariate effect of the ANN architecture was signi-
ficant. Thus, the ANN architectures differed with respect 
to the ANN performance indexes. 

In both networks (one-layer ANN and two-layer ANN), 
the multivariate effect of the input vector was also signi-
ficant. Therefore, the input vectors differed with respect 
to the ANN performance indexes.

Table 3. Performances of diff erent ar� fi cial neural network models with a one-layer network and input vector 2

Acti vati on 
functi on

No. of Neu-
rons

Training 
Method

Validati on Training Testi ng

MSE MSE MSE R2 SSE

logsig 7 LM 0,17 0,11 0,69 0,886 108,33

radbas 7 LM 0,98 0,69 2,27 0,744 356,39

tansig 7 LM 0,34 0,26 1,17 0,803 183,69

logsig 9 RB 1,63 1,35 1,34 0,694 210,38

radbas 9 RB 1,33 0,75 1,78 0,538 279,46

tansig 5 RB 1,87 1,54 2,29 0,438 359,53

Table 4. Performances of diff erent ar� fi cial neural network models with a hidden two-layer network and input vector 2

Acti vati on 
functi on
Layer 1

Acti vati on 
functi on
Layer 2

No. of 
Neurons
Layer 1

No. of 
Neurons
Layer2

Training 
Method

Validati on Training Testi ng

MSE MSE MSE R2 SSE

tansig logsig 8 7 LM 0,05 0.002 0,07 0,997 0,314

tansig radbas 9 9 LM 0,05 0,001 0,09 0,986 0,157

tansig tansig 8 9 LM 0,013 0,002 0,05 0,987 0,314

tansig logsig 9 11 RB 1,11 0,98 3,14 0,621 153,86

tansig radbas 9 12 RB 1,26 1,05 3,94 0,696 164,85

tansig tansig 9 9 RB 1 0,95 0,92 0,723 149,15
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In both networks (one-layer ANN and two-layer ANN), 
the F-ratio (26.73) indicated that the interaction effect of 
the input vector and network architecture was statisti-
cally significant at an alpha 0.05. Therefore, the architec-
ture performance was a function of the input vector, and 
input vector changes engendered significant differences 
in ANN performance with particular architectures. Accor-
dingly, in an urban catchment in which the hydrological 
process is complex and data are not sufficient, the run-
off estimation requires simultaneous examination and 
comparison of a diverse range of input vectors and ANN 
architectures.

Applicability analysis

The proposed ANN model developed in this study 
was verified and the model performance under different 
conditions of rainfall and vegetation were evaluated in 
the study of the area. The verification of the ANN model 
was performed by comparing the ANN model results to 
the observed runoff and SWMM simulation results. To 
determine whether there were significant differences 
among the results, a one-way MANOVA was carried out. 
The study of the area was composed of streets and high-
ways, apartments (with less than 10% vegetation), hou-
ses (with 10% to 15% vegetation), and greenbelts (with 
75% vegetation). The rainfall type was classified as rain-
fall with two-, five-, and ten-year return periods.

For this purpose, an experiment was designed in 
which nine rainfall-runoff events were divided into three 
groups according to three measurement models (ANN, 
SWMM, and observed). To investigate the performance 
of the proposed model in different rainfall situations, the 
authors selected the subjects in accordance with three 
types of rainfall period returns (two, five, and ten years). 

The model outputs were measured by four response va-
riables, ,,,, where  is the runoff volume pertaining to the 
four types of catchment vegetation. Table 6 lists the va-
lues of the four dependent variables in each of the cells. 

Table 6. Comparison of ar� fi cial neural network model and 
SWMM results and observed runoff  in diff erent types of urban 

catchments and rainfall return periods 

 Rainfall Re-
turn Period

Mean of 
dependent 

variables (/h)

Model Obser-
vedANN SWMM

2 Year

y1 7,96 7,7 6,5

y2 168 164,2 132

y3 90,8 89,76 63,7

y4 29,5 30,9 19,15

5 Year

y1 11,84 11,2 9,2

y2 263 239 233

y3 144 156,1 99,1

y4 42 45 26,05

10 Year

y1 14,2 14 9,8

y2 294,3 299,3 245

y3 165,3 167,3 115

y4 51,3 56,2 31,5

The one-way MANOVA analysis was performed by 
SPSS. The results are illustrated in Table 7. As shown in 
the table, none of the outcome variables is statistically 
significant at the 0.05 level of alpha. Therefore, we can 
conclude that no statistically significant difference exists 
between the value of runoff estimated by the ANN mo-

Table 5. Comparison of the performances of the four best fi � ed networks

Input
Combinati on

Hidden layers Training Method Testi ng

MSE R2 SSE

Vetor 1

1
radbas(5)

0,96 0,853 150,7
 @LM *

2
tansig(5) logsig(8) 

0,53 0,957 83,21
@LM **

Vetor 2

1
logsig(7)

0,69 0,886 108,33
@LM

2
tansig(8)-tansig (9) 

0,05 0,987 0,314
@LM 
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del, the SWMM model, and the one observed in the 
catchments. As the experiment was performed in various 
vegetation environments and rainfall periods of return, 
the MANOVA result suggests the responsiveness and 
applicability of the ANN model in a real-life scenario.

Table 7. Mul� variate Tests

Value F
Hypo-
thesis 

df.

Error 
df. Sig.

Pillai’s Trace 1,102 1,228 8,000 8,000 ,389

Wilks’ Lamb-
da ,055 2,450 8,000 6,000 ,146

Hotelling’s 
Trace 14,345 3,586 8,000 4,000 ,116

Roy’s Largest 
Root 14,143 14,143 4,000 4,000 ,013

4. CONCLUSION

In this study, various ANN architectures were examined 
to explore the best topology for the runoff estimation in 
an urban catchment. The proposed topology comprises 
these characteristics: two hidden layers, eight neurons in 
the first layer, nine neurons in the second layer, the same 
activation function of tansig in both layers, and the LM 
training algorithm. The result from the one-way MANO-
VA indicated that the proposed architecture can estimate 
runoff for different types of urban vegetation and rainfall 
intensities. A comparison of the runoff values generated 
by the proposed ANN model with those of SWMM sho-
wed no statistically significant differences between them. 

The results of this research support the application of 
ANN as a suitable alternative for physical models of run-
off estimation. Particularly, in urban catchments where 
data are insufficient and hydrological processes are com-
plex, the application of ANN is suitable. However, the 
ANN performance in urban catchments is the function of 
the input vector and network architecture. The results of 
a two-way MANOVA implied the significant effect of the 
ANN architecture and the input vector on ANN perfor-
mance. Moreover, the interaction effect of the ANN ar-
chitecture and input vector was additionally significant. 

These findings demonstrate the importance of input 
variables in ANN-based modeling of runoff estimation in 
urban catchments. Accordingly, a methodology is requi-
red to explore and select the best variables affecting the 
input vectors. The methodology developed in this study 
is based on an existing physical equation of the hydrolo-

gical process. In future research, it is suggested to apply 
multivariate statistical techniques, such as exploratory 
factor analysis and structural equation models. These 
techniques will contribute to explore unobservable cons-
tructs and to create an input vector that will foster a 
more accurate ANN model.
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